
Program Verification: Lecture 15

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1

Concurrent Objects in Rewriting Logic

Rewriting logic can model very naturally many different

kinds of concurrent systems. We have, for example, seen

that Petri nets can be naturally formalized as rewrite

theories. The same is true for many other models of

concurrency such as CCS, the π-calculus, dataflow,

real-time models, and so on.

One of the most useful and important classes of concurrent

systems is that of concurrent object systems, made out of

concurrent objects, which encapsulate their own local state

and can interact with other objects in a variety of ways,

including both synchronous interaction, and asynchronous

communication by message passing.

2

Concurrent Objects in Rewriting Logic (II)

It is of course possible to represent a concurrent object

system as a rewrite theory with somewhat different

modeling styles and adopting different notational

conventions.

What follows is a particular style of representation that has

proved useful and expressive in practice, and that is

supported by Full Maude’s object-oriented modules.

It is also possible to define object-oriented modules in Core

Maude using the conf attribute to specify an associative

commutative multiset union operators as a constructor of

configurations of objects and messages; the frewrite

command then ensures object and message fair executions

(see the All About Maude book).

3

Concurrent Objects in Rewriting Logic (III)

To model a concurrent object system as a rewrite theory,

we have to explain two things:

• how the distributed states of such a system are

equationally axiomatized and modeled by the initial

algebra of an equational theory (Σ, E), and

• how the concurrent interactions between objects are

axiomatized by rewrite rules.

We first explain how the distributed states are equationally

axiomatized.

4

Configurations

Let us consider the key state-building operations in Σ and

the equations E axiomatizing the distributed states of

concurrent object systems. The concurrent state of an

object-oriented system, often called a configuration, has

typically the structure of a multiset made up of objects and

messages.

Therefore, we can view configurations as built up by a

binary multiset union operator which we can represent with

empty syntax (i.e. juxtaposition) as,

_ _ : Conf ×Conf −→ Conf .

5

Configurations (II)

The operator _ _ is declared to satisfy the structural laws of

associativity and commutativity and to have identity null.

Objects and messages are singleton multiset configurations,

and belong to subsorts

Object Msg < Conf ,

so that more complex configurations are generated out of

them by multiset union.

6

Configurations (III)

An object in a given state is represented as a term

〈O : C | a1 : v1, . . . , an : vn〉

where O is the object’s name or identifier, C is its class, the

ai’s are the names of the object’s attribute identifiers, and

the vi’s are the corresponding values.

The set of all the attribute-value pairs of an object state is

formed by repeated application of the binary union operator

_ , _ which also obeys structural laws of associativity,

commutativity, and identity; i.e., the order of the

attribute-value pairs of an object is immaterial.

7

Configurations (IV)

The value of each attribute shouldn’t be arbitrary: it should

have an appropriate sort, dictated by the nature of the

attribute. Therefore, in Full Maude object classes can be

declared in class declarations of the form,

class C | a1 : s1, . . . , an : sn .

where C is the class name, and si is the sort required for

attribute ai.

We can illustrate such class declarations by considering

three classes of objects, Buffer, Sender, and Receiver.

8

Configurations (IV)

A buffer stores a list of integers in its q attribute. Lists of

integers are built using an associative list concatenation

operator, _ . _ with identity nil, and integers are regarded as

lists of length one. The name of the object reading from

the buffer is stored in its reader attribute; such names

belong to a sort Oid of object identifiers. Therefore, the

class declaration for buffers is,

class Buffer | q : IntList, reader: Oid .

The sender and receiver objects store an integer in a cell

attribute that can also be empty (mt) and have also a

counter (cnt) attribute. The sender stores also the name of

the receiver in an additional attribute.

9

Configurations (V)

The counter attribute is used to ensure that messages are

received by the receiver in the same order as they are sent

by the sender, even though communication between the two

parties is asynchronous.

Each time the sender gets a new value from the buffer, it

increments its counter. It later uses the current value of the

counter to tag the message sent with that value to the

receiver.

The receiver only accepts a message whose tag is its

current counter. It then increments its counter indicating

that it is ready for the next message.

10

Configurations (VI)

The class declarations are:

class Sender | cell: Int?, cnt: Int, receiver: Oid .

class Receiver | cell: Int?, cnt: Int .

where Int? is a supersort of Int having a new constant mt.

In Full Maude one can also give subclass declarations, with

subclass syntax (similar to that of subsort) so that all the

attributes and rewrite rules of a superclass are inherited by

a subclass, which can have additional attributes and rules of

its own.

11

Configurations (VII)

The messages sent by a sender object have the form,

(to Z : E from (Y,N))

where Z is the name of the receiver, E is the number sent, Y

is the name of the sender, and N is the value of its counter

at the time of the sending.

The syntax of messages is user-definable; it can be declared

in Full Maude by message operator declarations. In our

example by:

msg (to _ : _ from (_,_)) : Oid Int Oid Int -> Msg .

12

Object Rewrite Rules

The associativity and commutativity of a configuration’s

multiset structure make it very fluid. We can think of it as

“soup” in which objects and messages float, so that any

objects and messages can at any time come together and

participate in a concurrent transition corresponding to a

communication event of some kind.

In general, the rewrite rules in R describing the dynamics of

an object-oriented system can have the form,

13

Object Rewrite Rules (II)

r : M1 . . .Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉

−→ 〈Oi1 : F ′
i1
| atts ′i1〉 . . . 〈Oik : F ′

ik
| atts ′ik〉

〈Q1 : D1 | atts ′′1〉 . . . 〈Qp : Dp | atts ′′p〉

M ′
1 . . .M

′
q

if C

where r is the label, the Ms are message expressions,

i1, . . . , ik are different numbers among the original 1, . . . ,m,

and C is the rule’s condition.

14

Object Rewrite Rules (III)

That is, a number of objects and messages can come

together and participate in a transition in which some new

objects may be created, others may be destroyed, and

others can change their state, and where some new

messages may be created.

If two or more objects appear in the lefthand side, we call

the rule synchronous, because it forces those objects to

jointly participate in the transition. If there is only one

object and at most one message in the lefthand side, we

call the rule asynchronous.

15

Object Rewrite Rules (IV)

Three typical rewrite rules involving objects in the Buffer,

Sender, and Receiver classes are,

rl [read] : < X : Buffer | q: L . E, reader: Y >

< Y : Sender | cell: mt, cnt: N >

=> < X : Buffer | q: L, reader: Y >

< Y : Sender | cell: E, cnt: N + 1 >

rl [send] : < Y : Sender | cell: E, cnt: N, receiver: Z >

=> < Y : Sender | cell: mt, cnt: N > (to Z : E from (Y,N))

rl [receive] : < Z : Receiver | cell: mt, cnt: N >

(to Z : E from (Y,N))

=> < Z : Receiver | cell: E, cnt: N + 1 >

where E and N range over Int, L over IntList, X, Y, Z over

Oid, and L . E is a list with last element E.

16

Object Rewrite Rules (V)

Notice that the read rule is synchronous and the send and

receive rules asynchronous.

Of course, these rules are applied modulo the associativity

and commutativity of the multiset union operator, and

therefore allow both object synchronization and message

sending and receiving events anywhere in the configuration,

regardless of the position of the objects and messages.

We can then consider the rewrite theory R = (Σ, E,R)

axiomatizing the object system with these three object

classes, with R the three rules above (and perhaps other

rules, such as one for the receiver to write its contents into

another buffer object, that are omitted).

17

Σ-Transition Systems

What are the models of rewrite theories? The simplest

models are the Σ-transition systems.a

For Σ = ((S,<), F,Σ) a kind-complete order-sorted signature,

a Σ-transition system is a pair A = (A,→A) where:

• A = (A, A) is a Σ-algebra, and

• →A= {→A,[s]}[s]∈S/(≤∪≥)+ a S/(≤∪≥)+-indexed family of

transition relations, with →A,[s]⊆ A[s] ×A[s] for each [s];

and such that, if f : [s1] . . . [sn] → [s] in F , aj ∈ A[sj],

1 ≤ j ≤ n, and ai →A,[si] a
′
i, then (Transition Σ-closure),

fA(a1, . . . , ai, . . . , an) →A,[s] fA(a1, . . . , a
′
i, . . . , an).

aFor more general true concurrency models see: J. Meseguer, “20

Years of Rewriting Logic,” JLAMP, 81: 721–781 (2012).

18

Satisfaction

By definition, a Σ-transition system A = (A,→A) satisfies (or

is a model of) a rewrite theory R = (Σ, E,R), written A |= R,

iff it satisfies each equation (u = v) ∈ E, written A |= u = v,

and each rulea (l : t → t′) ∈ R, written A |= l : t → t′. This

exactly means:

• A |= E, and

• for each rewrite rule (l : t → t′) ∈ R and each assignment

a ∈ [X → A], with t, t′ of kind [s], there is a transition:

ta →A,[s] t
′a.

aTo simplify the exposition we assume all rules in R are unconditional.

All generalizes smoothly to the case of conditional rules.

19

Soundness and Completeness of Rewriting Logic

A rewrite theory R = (Σ, E,R) proves t →∗ t′, with t, t′

Σ-terms of same kind [s], written R ⊢ t →∗ t′, iff t →∗
R/E t.

Theorem (Soundness). For each rewrite theory

R = (Σ, E,R) and Σ-transition system A = (A,→A) such that

A |= R we have:

R ⊢ t →∗ t′ ⇒ A |= t →∗ t′.

Rewriting logic is also complete (Bruni and Meseguer,

Theoretical Computer Science, 360, 386-414, 2006), that

is, we have:

R |= t →∗ t′ ⇒ R ⊢ t →∗ t′.

where, by definition, R |= t →∗ t′ iff for all A such that

A |= R, A |= t →∗ t′ holds (i.e., ∀a ∈ [X → A], ta →∗
A,[s] t

′a).

20

Simulations Maps of Σ-Transition Systems

Given two Σ-transition systems A = (A,→A), and

B = (B,→B), a Σ-simulation map h : A → B is a

Σ-homomorphism h : A → B such that it “preserves

transitions,” that is, for each [s] ∈ S/(≤∪≥)+, if we have a

transition a →A,[s] a
′ in A, then there is a corresponding

transition h[s](a) →B,k h[s](a
′) in B.

Intuitively, we can think of h as an algebraic (because it

preserves the algebraic operations) simulation of system A

by system B, because, via h, B can mimic or simulate any

transition that A can make.

21

The Initial Σ-Transition System TR

Given a rewrite theory R = (Σ, E,R), consider the

Σ-transition system TR = (TΣ/E ,→R), where, by definition,

[t] →R [t′] ⇔ R ⊢ t → t′ (i.e., t →R/E t′)

This is indeed a Σ-transition system, and TR |= R, because:

• TΣ/E |= E, and

• for each (l : u → v) ∈ R we trivially have ua →R va for

any a ∈ [X → TΣ/E] because uθ →R/E vθ for any θ.

Using the Soundness Theorem and the initiality theorem for

order-sorted equational logic it is relatively easy to prove

(exercise) that we have:

22

The Initial Σ-Transition System TR (II)

Theorem. (Initiality Theorem). For Σ sensible and

kind-complete, TR is initial in the class of all Σ-transition

systems that satisfy R. That is, if A |= R, then there is a

unique Σ-simulation map:

R
A : TR → A.

In fact, on the underlying algebras, R
A is just the unique

Σ-homomorphism: E
A
: TΣ/E → A.

When reasoning about a concurrent system specified by a

rewrite theory R, for example as a system module in

Maude, TR gives us the standard model specified by R. In

other words, the initial algebra semantics of equational logic

generalizes in a natural way to an initial Σ-transition system

semantics for rewriting logic.

23

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ, E ∪ B,R) executable?

(Σ, E ∪B) should be sort-decreasing, terminating, confluent,

and sufficiently complete modulo B. But this is not enough,

because →R/E∪B can be undecidable. We can reduce it to

→R/B by requiring coherence of R w.r.t. E modulo B:

t
R/B

//

!E/B ��

t′

!E/B
!!
w

u
R/B

// u′

!E/B

==

Maude’s Coherence Checker checks this property.

24

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say,

R = (Σ, E ∪B,R), Maude assumes the following executability

conditions: (i) the usual ones for (Σ, E ∪B), and (ii) the

(ground) coherence of R with respect to E modulo B.

Assuming (i)–(ii), we can define the canonical Σ-transition

system CR = (CΣ/E,B ,→CR
), were CΣ/E,B is the canonical

term algebra modulo B, and given [u], [v] ∈ CΣ/E,B,[s],

[u] →CR
[v] holds iff there exists v′ such that u →R/B v′ and

[v] = [v′!E/B]. I.e., states are elements of CΣ/E,B; transitions

from [u] are the normal forms [v′!E/B] of rewrites u →R/B v′.

Theorem. TR and CR are isomorphic Σ-transition systems,

and therefore both are initial among all A such that A |= R.

25

