
Program Verification: Lecture 14

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1

The ITP Inference Rules

Notice that in the ITP we reason backwards, replacing the

main goal G we want to prove by subgoals, G1, . . . , Gn, such

that if we prove each of the subgoals, then we have proved

the main goal.

For such an inference to be sound, the implication

G1 ∧ . . . ∧Gn ⇒ G

should always be satisfied, that is, should be semantically

valid in the initial algebra TΣ,E on which we are doing the

inductive reasoning.

2

The ITP Inference Rules (II)

Such semantically valid inferences are expressed as inference

rules

G1 . . . Gn

G

However, since we are reasoning backwards, from the root

of the proof tree to the leaves, the ITP uses such rules in

the opposite direction, as rules

G

G1 . . . Gn

We will illustrate through an example such backward

reasoning for the ITP induction inference rule, and will at

the same time justify its soundness.

3

Induction on Other Data Structures: Tree Induction

We have already seen examples of how the ITP’s ind rule

applies to natural number induction and to list induction.

Before discussing the most general form of the ind rule for

any signature of constructors Ω and its justification, we give

an example illustrating binary tree induction, in which the

data in leaves are seen as depth-zero trees.

The intuitive idea is that to prove an inductive property P

about such trees we must show: (1) that P holds for the

data elements (base case); and (2) that if P holds for the

left and right subtrees, then it must hold for their binary

join (induction step).

4

Induction on Other Data Structures: Tree Induction (II)

Consider the following module defining binary trees whose

nodes are quoted identifiers (constants in the predefined

module QID), and a reverse function on binary trees.

fmod TREE is

protecting QID .

sort Tree .

subsort Qid < Tree .

op _#_ : Tree Tree -> Tree [ctor] .

op rev : Tree -> Tree .

var I : Qid .

vars T T’ : Tree .

eq rev(I) = I .

eq rev(T # T’) = rev(T’) # rev(T) .

endfm

5

Induction on Other Data Structures: Tree Induction (III)

We can apply binary tree induction to prove that for all

trees T the equation rev(rev(T)) = T holds. We can do so

by entering the TREE module in the ITP and the goal:

Maude> (goal rev : TREE |- A{T:Tree}((rev(rev(T:Tree))) = (T:Tree)) .)

=================================

label-sel: rev@0

=================================

A{T:Tree} rev(rev(T:Tree)) = T:Tree

+++++++++++++++++++++++++++++++++

6

Induction on Other Data Structures: Tree Induction (IV)

We can then try to prove this goal by induction on T:Tree.

Maude> (ind on T:Tree .)

=================================

label-sel: rev@1.0

=================================

A{V0#0:Qid} rev(rev(V0#0:Qid)) = V0#0:Qid ==>

rev(rev(V0#0:Qid)) = V0#0:Qid

=================================

label: rev@2.0

=================================

A{V0#0:Tree ; V0#1:Tree} rev(rev(V0#1:Tree)) = V0#1:Tree &

rev(rev(V0#0:Tree)) = V0#0:Tree ==>

rev(rev(V0#0:Tree # V0#1:Tree)) = V0#0:Tree # V0#1:Tree

+++++++++++++++++++++++++++++++++

7

Induction on Other Data Structures: Tree Induction (V)

Note that goal rev@2.0 is the “induction step” in tree

induction, whereas the “base case” is goal rev@1.0. Both

subgoals can then be proved using the auto tactic.

Maude> (auto .)

=================================

label-sel: rev@2.0

=================================

A{V0#0:Tree ; V0#1:Tree} rev(rev(V0#1:Tree)) = V0#1:Tree &

rev(rev(V0#0:Tree)) = V0#0:Tree ==>

rev(rev(V0#0:Tree # V0#1:Tree)) = V0#0:Tree # V0#1:Tree

+++++++++++++++++++++++++++++++++

Maude> (auto .)

q.e.d

8

Structural Induction

We have already observed how the ITP supports inductive

proofs in three cases: natural number induction, list

induction, and tree induction. But what is the general form

of induction supported by the ITP for a specification having

a subsignature Ω of constructors? This general form is

called structural induction. It reduces proving an inductive

property of the form (∀x : s) P (x), to proving:

• Base Case. For any constant a : nil −→ s′ in Ω with

s′ ≤ s, the subgoal P (x 7→ a)

Notation: Given a variable x, the substitution {x 7→ t}

mapping x to a term t is abbreviated to (x 7→ t), and its

homomorphic extension is denoted (x 7→ t).

9

Structural Induction (II)

• Induction Step. For each constructor

f : s1 . . . snf
−→ s′ in Ω with s′ ≤ s, where the sorts

si1 , . . . , sikf
are those among the s1 . . . snf

such that

sij ≤ s, 1 ≤ j ≤ kf , the subgoal,

(∀x1 : s1, . . . , xnf
: snf

)
∧

1≤j≤kf

P (x 7→ xij) → P (x 7→ f(x1, . . . , xnf
)).

Note: It may happen that none of the sorts among the

s1 . . . snf
is s or a subsort of s. In that case, the subgoal

has the form (∀x1 : s1, . . . , xnf
: snf

) P (x 7→ f(x1, . . . , xnf
)).

10

Structural Induction (III)

Structural Induction is an inference rule of the form,

∧
iP (x 7→ai) ∧

∧
l(∀x1, . . . , xnfl

)
∧

1≤j≤kfl

P (x 7→xij) ⇒P (x 7→ fl(x1, . . . , xnfl
))

(∀x : s) P (x)

where the ai and the fj include all the constructor constants

and operators meeting the properties specified above.

In the ITP this rule is used backwards as the ind rule,

(∀x : s) P (x)∧
iP (x 7→ai) ∧

∧
l(∀x1, . . . , xnfl

)
∧

1≤j≤kfl

P (x 7→xij) ⇒P (x 7→ fl(x1, . . . , xnfl
))

11

Justification of the ind Rule

Why is ind a sound inference rule? First consider:

Lemma: For (Σ, E) confluent, sort-decreasing, terminating

and sufficiently complete for constructors Ω, given any

Σ-equation t = t′ with X = vars(t = t′) we have:

TΣ/E |= t = t′ ⇔ ∀θ ∈ [X → TΩ] TΣ/E |= tθ = t′θ.

Proof: Since TΣ/E
∼= CΣ/E it is enough to prove that

CΣ/E |= t = t′ ⇔ ∀θ ∈ [X → TΩ] CΣ/E |= tθ = t′θ.

But, since CΣ/E ⊆ TΩ, any a : X −→ CΣ/E is a substitution

θ : X −→ TΩ, exactly one of the form θ = θ!E. Furthermore,

for each θ ∈ [X → TΩ] we have the equivalence,

CΣ/E |= tθ = t′θ ⇔ (tθ)!E = (t(θ!E))!E = (t′(θ!E))!E = (t′θ)!E .

12

Justification of the ind Rule (II)

But since any θ : X −→ CΣ/E satisfies θ = θ!E,

∀ θ ∈ [X → TΩ] (t(θ!E))!E = (t′(θ!E))!E exactly means

CΣ/E |= t = t′. q.e.d.

Notice that the above Lemma easily generalizes to the

modulo B case, that is, to theories (Σ, E ∪B) with E ground

confluent, sort-decreasing, terminating and sufficiently

complete for Ω modulo B and Σ preregular modulo B. Our

justification of the ind rule in what follows works just the

same for the modulo B case.

13

Justification of the ind Rule (III)

Notice that the argument of the above lemma does not

depend on our formula being actually an equation: by

reasoning inductively on the structure of formulas we can

show that the lemma applies to any universally-quantified

first-order formula of the form (∀x : s) P (x) (P itself can

have other quantifiers).

Therefore, we have reduced the problem of proving an

inductive property, (∀x : s) P (x), to that of proving that for

all t ∈ TΩ,s the instantiated property P (x 7→ t) holds.

Here is where structural induction steps in as a method,

namely, by analyzing more closely what it means to prove

something for all t ∈ TΩ,s.

14

Justification of the ind Rule (IV)

Theorem. (Soundness of Structural Induction). For (Σ, E)

ground confluent, sort-decreasing, and terminating with

subsignature of constructors Ω, if we have

TΣ/E |=
∧

i

P (x 7→ai) ∧
∧

l

(∀x1, . . . , xnfl
)

∧

1≤j≤kfl

P (x 7→xij) ⇒P (x 7→fl(x1, . . . , xnfl
))

then we also have

TΣ/E |= (∀x : s) P (x).

Proof. Suppose not. I.e., the hypothesis holds and there is

a ground constructor term t ∈ TΩ,s s.t. TΣ/E 6|= P (x 7→ t).

Choose such t ∈ TΩ,s of smallest depth possible. That is any

other t′ ∈ TΩ,s such that TΣ/E 6|= P (x 7→ t′) must have tree

depth greater or equal to that of t.

15

Justification of the ind Rule (V)

Suc a term t cannot be a constant ai of sort less or equal to

s, since we have TΣ/E |=
∧

iP (x 7→ai). Therefore, t must be of

the form t = fq(t1, . . . , tnfq
). But by the minimal depth

assumption on t, we must have TΣ/E |= P (x 7→ tij),

1 ≤ j ≤ kfq . Which by the theorem’s hypothesis implies

TΣ/E |= P (x 7→ fq(t1, . . . , tnfq
)). That is, TΣ/E |= P (x 7→ t),

contradicting the assumption TΣ/E 6|= P (x 7→ t). q.e.d.

16

Verification of Concurrent Programs

We will begin considering the topic of verification of

concurrent programs. We will consider first the case of

declarative concurrent programs. Later in the course we will

also consider verification of imperative (sequential or

concurrent) programs.

So the first question is, what is a suitable computational

logic to write concurrent programs in a declarative style?

This is of course an open-ended question, in that a variety

of answers are possible at present, and new answers may be

proposed in the future.

17

Verification of Concurrent Programs (II)

In this course, we will use rewriting logic as a specific

computational logic that is indeed well suited for concurrent

programming.

This is in full harmony with our use of equational logic for

what, rather than sequential, we could better call

deterministic declarative programming. In fact, rewriting

logic generalizes equational logic in a natural way.

18

Rewrite Theories: Preliminary Definition

We give a first, already quite general, definition of rewrite

theories. We will further generalize this notion later.

A rewrite theory R is a triple R = (Σ, E,R), with:

• (Σ, E) a (kind-complete) order-sorted equational theory,

and

• R a set of labeled rewrite rules of the form

l : t −→ t′ ⇐ cond, with l a label, t, t′ ∈ TΣ(X)k for some

kind k, and cond a condition (involving the same

variables X) as explained below.

19

Conditional Rewrite Rules

The most general form of a conditional rewrite rule is:

l : t −→ t′ ⇐ (
∧

i

ui = u′

i) ∧ (
∧

j

wj −→ w′

j),

that is, in general, the condition is a conjunction of

equations and rewrites, where the variables in all the

Σ-terms t, t′, ui, u
′

i, wj , w
′

j are contained in a common set X.

There is no requirement that vars(t) = X, and no

assumptions of confluence or termination. The rule is called

unconditional if the condition is empty.

20

Maude System Modules

In Maude, rewrite theories are specified in system modules.

The same way that a functional module has essentially the

form, fmod (Σ, E) endfm, with (Σ, E) an order-sorted

equational logic theory, a system module has the form, mod

(Σ, E,R) endm, with (Σ, E,R) a rewrite theory.

We will illustrate the syntax details in examples. In

particular, a conditional rewrite rule of the form,

l : t −→ t′ ⇐ cond is specified in Maude with syntax,

crl [l] : t => t′ if cond .

and an unconditional rule l : t −→ t′ with syntax,

rl [l] : t => t′ .

21

Some Rewriting Logic Examples

To motivate rewriting logic as a formalism to

mathematically model and program concurrent systems, we

will show how it can be used to naturally specify three

important classes of systems, namely:

• automata, also called labeled transition systems,

• Petri nets, one of the simplest concurrency models, and

• object-oriented concurrent systems.

22

Concurrency vs. Nondeterminism: Automata

We can motivate concurrency by its absence. The point is

that we can have systems that are nondeterministic, but are

not concurrent. Consider the following faulty automaton to

buy candy:

✎
✍

☞
✌$

✎
✍

☞
✌ready

✎
✍

☞
✌nestle

✎
✍

☞
✌broken

✎
✍

☞
✌m&m

✎
✍

☞
✌q

✲✛
✏✏✏✏✏✏✶

PPPPPPq

✲ ✲

✏✏✏✏✏✏✶
in

cancel

fault

1

2

chng

chng

23

Concurrency vs. Nondeterminism: Automata (II)

Although in the above automaton each labeled transition

from each state leads to a single next state, the automaton

is nondeterministic in the sense that the automaton’s

computations are not confluent, and therefore completely

different outcomes are possible.

For example, from the ready state the transitions fault and

1 lead to completely different states that can never be

reconciled in a common subsequent state.

24

Concurrency vs. Nondeterminism: Automata (III)

So, the automaton is in this sense nondeterminisitc, yet it is

strictly sequential, in the sense that, although at each state

the automaton may be able to take several transitions, it

can only take one transition at a time.

Since the intuitive notion of concurrency is that several

transitions can happen simultaneously, we can conclude by

saying the our automaton, although it exhibits a form of

nondeterminism, has no concurrency whatsoever.

25

Automata as Rewrite Theories

We can specify such an automaton as a system module,

mod CANDY-AUTOMATON is

sort State .

ops $ ready broken nestle m&m q : -> State .

rl [in] : $ => ready .

rl [cancel] : ready => $.

rl [1] : ready => nestle .

rl [2] : ready => m&m .

rl [fault] : ready => broken .

rl [chng] : nestle => q .

rl [chng] : m&m => q .

endm

26

Rewite Rules as Transitions

Note that rewrite rules do not have an equational

interpretation. They are not understood as equations, but

as transitions, that in general cannot be reversed.

This is why, in a rewite theory (Σ, E,R) the equations in E

are totally different from the rules R, since equations and

rules have a totally different semantics.

However, operationally Maude will assume that the

equations in E are confluent, terminating, and sort

decreasing modulo axioms B, and will compute with such

equations and also with the rules in R by rewriting, yet

distinguishing equation simplification (the reduce command)

from rewriting with rules (the rewrite command).

27

The rewrite Command

Maude can execute rewrite theories with the rewrite

command (can be abbreviated to rew). For example,

Maude> rew $.

rewrite in CANDY-AUTOMATON : $.

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result State: q

The rewrite command applies the rules in a fair way (all

rules are given a chance) hopefully until termination, and, if

it terminates, gives one result.

28

The rewrite Command (II)

In this example, fairness saves us from nontermination, but

in general we can esily have nonterminating computations.

For this reason the rewrite command can be given a

numeric argument stating the maximum number of rewrite

steps. Furthermore, using Maude’s the trace command we

can observe such steps. For example,

29

The rewrite Command (III)

Maude> set trace on .

Maude> rew [3] $.

rewrite [3] in CANDY-AUTOMATON : $.

*********** rule

rl [in]: $ => ready .

empty substitution

$ ---> ready

*********** rule

rl [cancel]: ready => $.

empty substitution

ready ---> $

*********** rule

rl [in]: $ => ready .

empty substitution

$ ---> ready

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result State: ready

30

The search Command

Of course, since we are in a nondeterministic situation, the

rewrite command gives us one possible behavior among

many.

To systematically explore all behaviors from an initial state

we can use the search command, which takes two terms: a

ground term which is our initial state, and a term, possibly

with variables, which describes our desired target state.

Maude then does a breadth first search to try to reach the

desired target state. For example, to find the terminating

states from the $ state we can give the command (where

the “!” in =>! specifies that the target state must be a

terminating state),

31

The search Command (II)

Maude> search $ =>! X:State .

search in CANDY-AUTOMATON : $ =>! X:State .

Solution 1 (state 4)

states: 6 in 0ms cpu (0ms real)

X:State --> broken

Solution 2 (state 5)

states: 6 in 0ms cpu (0ms real)

X:State --> q

We can then inspect the search graph by giving the

command,

32

The search Command (III)

Maude> show search graph .

state 0, State: $

arc 0 ===> state 1 (rl [in]: $ => ready .)

state 1, State: ready

arc 0 ===> state 0 (rl [cancel]: ready => $.)

arc 1 ===> state 2 (rl [1]: ready => nestle .)

arc 2 ===> state 3 (rl [2]: ready => m&m .)

arc 3 ===> state 4 (rl [fault]: ready => broken .)

state 2, State: nestle

arc 0 ===> state 5 (rl [chng]: nestle => q .)

state 3, State: m&m

arc 0 ===> state 5 (rl [chng]: m&m => q .)

state 4, State: broken

state 5, State: q

33

The search Command (IV)

We can then ask for the shortest path to any state in the

state graph (for example, state 5) by giving the command,

Maude> show path 5 .

state 0, State: $

===[rl [in]: $ => ready .]===>

state 1, State: ready

===[rl [1]: ready => nestle .]===>

state 2, State: nestle

===[rl [chng]: nestle => q .]===>

state 5, State: q

34

The search Command (V)

Similarly, we can search for target terms reachable by one

or more rewrite steps, or zero or more steps by typing

(respectively):

• search t =>+ t′ .

• search t =>* t′ .

35

The search Command (VI)

Furthermore, we can restrict any of those searches by giving

an equational condition on the target term. For example,

all terminating states reachable from $ other than broken

can be found by the command,

Maude> search $ =>! X:State such that X:State =/= broken .

search in CANDY-AUTOMATON : $ =>! X:State

such that X:State =/= broken = true .

Solution 1 (state 5)

states: 6 in 0ms cpu (0ms real)

X:State --> q

36

The search Command (VII)

Of course, in general there can be an infinite number of

solutions to a given search. Therefore, a search can be

further restricted by giving as an extra parameter in

brackets the number of solutions (i.e., target terms that are

instances of the pattern and satisfy the condition) we want:

search [1] in CANDY-AUTOMATON : $ =>! X:State .

Solution 1 (state 4)

states: 6 in 0ms cpu (0ms real)

X:State --> broken

37

The search Command (VIII)

In our CANDY-AUTOMATON example the number of states is

finite, but for a general rewrite theory the number of states

reachable from an initial state can be infinite. So, even if

we search for a single solution, the search process may not

terminate, because no such solution exists. To make search

terminating, at least for unconditional rewrite rules, we can

add a second parameter, namely, a bound on the length of

the paths searched from the initial state.

search [1, 1] in CANDY-AUTOMATON : $ =>! X:State .

No solution.

states: 2 rewrites: 2 in 0ms cpu (36ms real) (~ rewrites/second)

38

Labelled Transition Systems

Our CANDY-AUTOMATON example is just a special instance of a

general concept, namely, that of automaton, also called a

labeled transition system (LTS) by which we mean a triple:

A = (A,L, T) with:

• A is a set, called the set of states,

• L is a set called the set of labels, and

• T ⊆ A× L×A is called the set of labeled transitions.

39

LTS’s as Rewrite Theories

Note that we have associated to our candy automaton a

rewrite theory (system module) CANDY-AUTOMATON.

This is of course just an instance of a general

transformation, that assign to a LTS A a rewrite theory

R(A) with a single sort A, constants x ∈ A, and for each

(x, l, y) ∈ T a rewrite rule l : x −→ y.

40

Petri Nets

So far so good, but we have not yet seen any concurrency.

The simplest concurrent system examples are probably the

concurrent automata called Petri nets. Consider for

example the picture,

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

buy-c buy-a change

❄ ❄

❄

PPPPPPPq

✏✏✏✏✏✏✏✮ PPPPPPP✐

✻
4

c

$

a q

41

Petri Nets (II)

The previous picture represents a concurrent machine to

buy cakes and apples; a cake costs a dollar and an apple

three quarters.

Due to an unfortunate design, the machine only accepts

dollars, and it returns a quarter when the user buys an

apple; to alleviate in part this problem, the machine can

change four quarters into a dollar.

The machine is concurrent, because we can push several

buttons at once, provided enough resources exist in the

corresponding slots, which are called places

42

Petri Nets (III)

For example, if we have one dollar in the $ place, and four

quarters in the q place, we can simultaneously push the

buy-a and change buttons, and the machine returns, also

simultaneously, one dollar in $, one apple in a, and one

quarter in q.

That is, we can achieve the concurrent computation,

buy-a change : $ q q q q −→ a q $.

43

Petri Nets (IV)

This has a straightforward expression as a rewrite theory

(system module) as follows:

mod PETRI-MACHINE is

sort Marking .

ops null $ c a q : -> Marking .

op _ _ : Marking Marking -> Marking [assoc comm id: null] .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [chng] : q q q q => $.

endm

44

Petri Nets (V)

That is, we view the distributed state of the system as a

multiset of places, called a marking, with identity for

multiset union the empty multiset null.

We then view a transition as a rewite rule from one

(pre-)marking to another (post-)marking.

45

Petri Nets (VI)

The rewrite rule can be applied modulo associativity,

commutativity and identity to the distributed state iff its

pre-marking is a submultiset of that state.

Furthermore, if the distributed state contains the union of

several such presets, then several transitions can fire

concurrently.

For example, from $ $ $ we can get in one concurrent step

to c c a q by pushing twice (concurrently!) the buy-c

button and once the buy-a button.

46

Petri Nets (VII)

We can of course ask and get answers to questions about

the behaviors possible in this system. For example, if I have

a dollar and three quarters, can I get a cake and an apple?

Maude> search $ q q q =>+ c a M:Marking .

search in PETRI-MACHINE : $ q q q =>+ c a M:Marking .

Solution 1 (state 4)

states: 5 in 0ms cpu (0ms real)

M:Marking --> null

we can also interrogate the search graph,

47

Petri Nets (VIII)

Maude> show search graph .

state 0, Marking: $ q q q

arc 0 ===> state 1 (rl [buy-c]: $ => c .)

arc 1 ===> state 2 (rl [buy-a]: $ => a q .)

state 1, Marking: c q q q

state 2, Marking: a q q q q

arc 0 ===> state 3 (rl [chng]: q q q q => $.)

state 3, Marking: $ a

arc 0 ===> state 4 (rl [buy-c]: $ => c .)

arc 1 ===> state 5 (rl [buy-a]: $ => a q .)

state 4, Marking: c a

state 5, Marking: a a q

48

Petri Nets (IX)

Maude> show path 4 .

state 0, Marking: $ q q q

===[rl [buy-a]: $ => a q .]===>

state 2, Marking: a q q q q

===[rl [chng]: q q q q => $.]===>

state 3, Marking: $ a

===[rl [buy-c]: $ => c .]===>

state 4, Marking: c a

49

What is Concurrency?

Why was concurrency impossible in our CANDY-AUTOMATON

example, but possible in our little PETRI-MACHINE example?

The problem with CANDY-AUTOMATON, and with any LTS

having unstructured states, is that its states are atomic,

and, having no smaller pieces, cannot be distributed.

By contrast, a Petri net marking is made out of smaller

pieces, namely its constituent places, and therefore can be

distributed, so that several transitions can happen

simultaneously.

50

What is Concurrency? (II)

Then what, is concurrency about multisets?

Not necessarily; this is the very common fallacy of taking

the part for the whole; for example, “Logic Programming =

Prolog,” or “Concurrency = Petri Nets”.

A more fair and open-minded answer is to give the rewriting

logic motto:

Concurrent Structure = Algebraic Structure.

51

What is Concurrency? (III)

That is, any algebraic structure in the set of states, other

than atomic constants, even a single unary operator, will

open the possibility for the states to be distributed, and

therefore for transitions being concurrent.

Of course that potential for concurrency may be frustrated

by the specific transitions of a system forcing a sequential

execution, but the potential is there if we use other

transitions.

In summary, there are as many possible styles of concurrent

systems as there are signatures Σ and equations E. For

example: multiset concurrency, tree concurrency, string

concurrency, and many, many other possibilities.

52

Petri Nets in General

I give the Meseguer-Montanari “Petri nets are monoids”

definition, instead than the usual, but less enlightening,

multigraph definition.

A place-transition Petri net N consists of:

• a set P of places; we then call markings to the

elements in the free commutative monoid M(P) of

finite multisets of P .

• a labeled transition system N = (M(P), L, T).

53

Petri Nets in General (II)

The general transformation associating a rewrite theory

R(N) to each Petri net N is then obvious. R(N) has:

• a single sort, named, say M(P), or just Marking, with

constants the elements of P and a null constant.

• a binary operator

: Marking Marking −→ Marking [assoc comm id : null]

• for each (m, l,m′) ∈ T a rewrite rule l : m −→ m′.

54

