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Construction of the Initial Algebra TΣ/E

TΣ is initial in the class AlgΣ of all Σ-algebras. To give an

initial algebra semantics to Maude functional modules of

the form fmod(Σ, E)endfm we need an initial algebra in the

class Alg(Σ,E) of all (Σ, E)-algebras, with Σ sensible, kind

complete, and with nonempty sorts.

We shall construct such an algebra, denoted TΣ/E, and

show that it is indeed initial in Alg(Σ,E), i.e., (i) TΣ/E |= E,

and (ii) for any (Σ, E)-algebra A there is a unique

Σ-homomorphism E
A
: TΣ/E −→ A.

If the equations E are sort-decreasing, confluent,

terminating and sufficiently complete, will show that there

is an isomorphism TΣ/E
∼= CΣ/E, a very intuitive semantics.
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Construction of TΣ/E (II)

We construct TΣ/E out of the provability relation

(Σ, E) ⊢ t = t′; that is, out of the relation t =E t′. But, by

definition t =E t′ ⇔ (Σ,
−→
E ∪

←−
E ) ⊢ t→∗ t′. Therefore, =E,

besides being reflexive and transitive is symmetric, and

therefore is an equivalence relation on terms. But since if

t =E t′, then there is a connected component [s] such that

t, t′ ∈ TΣ,[s], in particular =E is also an equivalence relation on

TΣ,[s]. Therefore, we have a quotient set TΣ/E,[s] = TΣ,[s]/=E.

We can then define the S-indexed family of sets

TΣ/E = {TΣ/E,s}s∈S, where, by definition,

TΣ/E,s = {[t] ∈ TΣ/E,[s] | (∃t
′) t′ ∈ [t] ∧ t′ ∈ TΣ,s},

where [t], or [t]E, abbreviate [t]=E .
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Construction of TΣ/E (III)

To make TΣ/E into a Σ-algebra TΣ/E = (TΣ/E , TΣ/E
),

interpret a constant a : nil −→ s in Σ by its equivalence class

[a].

Similarly, given f : s1 . . . sn → s in Σ, and given [ti] ∈ TΣ/E,si,

1 ≤ i ≤ n, define

fs1...sn,s
TΣ/E

([t1], . . . , [tn]) = [f(t′1, . . . , t
′

n)],

where t′i ∈ [ti] ∧ t′i ∈ TΣ,si, 1 ≤ i ≤ n.

Checking that the above definition does not depend on

either: (1) the choice of the t′i ∈ [ti], or (2) the choice of

the subsort-overloaded operator f : s1 . . . sn → s in Σ, so that

it is well-defined and indeed defines an order-sorted

Σ-algebra is left as an easy exercise.
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Initiality Theorem for TΣ/E

Theorem: For (Σ, E) with Σ sensible, kind complete, and

with nonempty sorts, TΣ/E |= E. Furthermore, TΣ/E is initial

in the class Alg(Σ,E). That is, for any A ∈ Alg(Σ,E) there is a

unique Σ-homomorphism E
A
: TΣ/E −→ A.

Proof: We first need to show that TΣ/E |= E, i.e., that

TΣ/E |= t = t′ for each (t = t′) ∈ E. That is, for each

assignment a : X −→ TΣ/E we must show that t a = t′ a.

But the unique Σ-homomorphism TΣ/E
: TΣ −→ TΣ/E

guaranteed by TΣ initial is just the passage to equivalence

classes t 7→ [t] and is therefore surjective.
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Initiality Theorem for TΣ/E (II)

Therefore, since by the Axiom of Choice any surjective

function is a right inverse (STACS, Ch. 10, Thm. 9, pg.

80), we can always choose a substitution θ : X −→ TΣ such

that a = θ; TΣ/E
. Therefore, by the Freeness Corollary we

have a = θ; TΣ/E
(see diagram next page).

Therefore, t a = t′ a is just the equality [tθ]E = [t′θ]E, which

holds iff tθ =E t′θ, which itself holds by (t = t′) ∈ E and the

Lemma in the proof of the Soundness Theorem. Therefore,

TΣ/E |= E.
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Lifting of a to a Substitution θ
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✘
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Initiality Theorem for TΣ/E (III)

Let us now show that for each A ∈ Alg(Σ,E) there is a

unique Σ-homomorphism E
A
: TΣ/E −→ A.

We first prove uniqueness. Suppose that we have two

homomorphisms h, h′ : TΣ/E −→ A. Then, composing with

TΣ/E
: TΣ −→ TΣ/E on the left we get,

TΣ/E
;h, TΣ/E

;h′ : TΣ −→ A, and by the initiality of TΣ we

must have, TΣ/E
;h = TΣ/E

;h′ = A. But recall that

TΣ/E
: TΣ −→ TΣ/E is surjecive, and therefore (Ex.10.8) epi,

which forces h = h′, as desired.
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Initiality Theorem for TΣ/E (IV)

To show existence of E
A
: TΣ/E −→ A, given [t] ∈ TΣ/E,s,

define [t]E
A,s = t′

A,s, where t′ ∈ [t] ∧ t′ ∈ TΣ,s. Then show

(exercise) that:

• [t]E
A,s is independent of the choice of t′ because of the

hypothesis A |= E and the Soundness Theorem; and

• the family of functions E
A
= { E

A,s}s∈S thus defined is

indeed a Σ-homomorphism.

q.e.d.
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The Mathematical and Operational Semantics Coincide

As stated in pg. 2, the semantics of a Maude functional

module fmod(Σ, E)endfm is an initial algebra semantics, given

by TΣ/E. Let us call TΣ/E the module’s mathematical

semantics. This sematics does not depend on any

executability assumptions about fmod(Σ, E)endfm: it can be

defined for any equational theory (Σ, E).

Call fmod(Σ, E)endfm admissible if the equations E are

confluent, sort-decreasing, terminating and sufficiently

complete. Under these executabilty requirements we have

another semantics for fmod(Σ, E)endfm: the canonical term

algebra CΣ/E defined in Lecture 4. This is the most

intuitive computational model for fmod(Σ, E)endfm. Call it its

operational semantics. But both semantics coincide!
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The Canonical Term Algebra is Initial

Theorem: If the rules ~E are sort-decreasing, confluent,

terminating and sufficiently complete, then, CΣ/E is

isomorphic to TΣ/E and is therefore initial in Alg(Σ,E).

Proof: An easy generalization of Ex.10.10 shows that if I

is initial for a given class of algebras closed under

isomorphisms and J is isomorphic to I, then J is also initial

for that class. Since (Ex.11.2) Alg(Σ,E) is closed under

isomorphisms, we just have to show TΣ/E
∼= CΣ/E.

Define !E = { !E,s : TΣ/E,s −→ CΣ/E,s}s∈S by, [t]!E,s = t!E.

This is independent of the choice of t, since t =E t′ iff

E ⊢ t = t′ iff (by E confluent) t ↓E t′, iff t!E = t′!E. !E,s is

surjective by construction and injective by these

equivalences; therefore !E is bijective.
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The Canonical Term Algebra is Initial (II)

Let us see that !E : TΣ/E −→ CΣ/E is a Σ-homomorphism.

Preservation of constants is trivial. Let f : s1 . . . sn → s in Σ,

and [ti] ∈ TΣ/E,si, 1 ≤ i ≤ n. We must show,

fs1...sn,s
TΣ/E

([t1], . . . , [tn])!E,s = fs1...sn,s
CΣ/E

(t1!E , . . . , tn!E).

The key observation is that ti!E ∈ TΣ,si, 1 ≤ i ≤ n. This is

because:

• by definition of [ti] there must be a t′i ≡E ti with

t′i ∈ TΣ,si, 1 ≤ i ≤ n; and

• by the sort-decreasingness assumption for E, since

t′i
∗
−→E t′i!E = ti!E, if t′i ∈ TΣ,si, 1 ≤ i ≤ n, then ti!E ∈ TΣ,si,

1 ≤ i ≤ n.
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The Canonical Term Algebra is Initial (III)

Therefore, we have:

fs1...sn,s
TΣ/E

([t1], . . . , [tn])!E = [f(t1!E , . . . , tn!E)]!E

(by definition of fs1...sn,s
TΣ/E

)

= f(t1!E , . . . , tn!E)!E (by definition of !E)

= fs1...sn,s
CΣ/E

(t1!E , . . . , tn!E)

(by definition of fs1...sn,s
CΣ/E

)

as desired.

All now reduces to proving the following easy lemma, which

is left as an exercise:

Lemma. The bijective S-sorted map !−1
E : CΣ/E → TΣ/E is a

Σ-homomorphism !−1
E : CΣ/E → TΣ/E.

q.e.d
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Math. Sems. = Operatl. Sems.: An Example

The canonical term algebra CΣ/E is in some sense the most

intuitive representation of the initial algebra from a

computational point of view. Let us see in a simple example

what the coincidence beteen mathematical and operational

semantics means.

For example, the equations ENATURAL in the NATURAL module

are confluent and terminating. Its canonical forms are the

natural numbers in Peano notation. And its operations are

the successor and addition functions.

Indeed, given two Peano natural numbers n,m the general

definition of fs1...sn,s
CΣ/E

specializes for f = + to the definition

of addition, n+CNATURAL
m = (n+m)!ENATURAL

, so that +CNATURAL
is

the addition function.
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Math. Sems. = Operatl. Sems.: An Example (II)

TΣNATURAL/ENATURAL

✎

✌☞

✍

. . . . . . . . . . . .

ppss0 s0 + 0 ss0 + 0

0 + 0 0 + s0 s0 + s0

ps0 pss0 psss0

0 s0 ss0 . . .

�
✂✄
✁ CΣNATURAL/ENATURAL
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All Generalizes Modulo Axioms B

More generally, we are interested in the agreement between

the mathematical and operational semantics of an

admissible Maude module of the form fmod(Σ, E ∪B)endfm,

with B a (possibly empty) set of associativity,

commutativity, and identity axioms. The, following, easy

but nontrivial, generalization of the above theorem is left as

an exercise.

Theorem: Let the equations E in (Σ, E ∪B) be

sort-decreasing, confluent, terminating and sufficiently

complete modulo B; and let Σ be preregular modulo B.

Then, CΣ,E/B is isomorphic to TΣ/E∪B and is therefore initial

in Alg(Σ,E∪B).
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Verification of Maude Functional Modules

We are now ready to begin discussing program verification

for deterministic declarative programs, and, more

specifically, for Maude functional modules of the form

fmod(Σ, E ∪B)endfm, where we assume E confluent,

sort-decreasing, terminating and sufficiently complete

modulo B, and Σ preregular modulo B. Their mathematical

semantics is given by the initial algebra TΣ/E∪B.

Their (concrete) operational semantics is given by

equational simplification with ~E modulo B. Both semantics

coincide in the canonical term algebra, since we have the

Σ-isomorphism,

TΣ/E∪B
∼= CΣ,E/B.
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Verification of Maude Functional Modules (II)

What are properties of a module fmod(Σ, E ∪B)endfm?

They are sentences ϕ, perhaps in equational logic, or, more

generally, in first-order logic, in the language of a signature

containing Σ.

When do we say that the above module satisfies property ϕ?

When we have,

TΣ/E∪B |= ϕ.

How do we verify such properties?
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A Simple Example: Associativity of Addition

Consider the module,

fmod NATURAL is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural .

vars N M L : Natural .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

A property ϕ satisfied by this module is the associativity of

addition, that is, the equation,

(∀N, M, L) N + (M + L) = (N + M) + L.
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Need More than Equational Deduction

Since the initial algebra TΣ/E∪B associated to a module

fmod(Σ, E ∪B)endfm satisfies the equations E ∪B, by the

Soundness Theorem for equational deduction, whenever

we can prove an equation ϕ by E ∪B ⊢ ϕ, we must have

TΣ/E∪B |= ϕ, and therefore the module satisfies ϕ.

Therefore, equational deduction is always a sound proof

method to verify properties of functional modules.

However, it is quite limited, and generally insufficient for

many properties.

In particular, for ϕ the associativity of addition and E the

equations in NATURAL (in this case A = ∅) we cannot prove

E ⊢ (x+ y) + z = x+ (y + z).

20



Need More than Equational Deduction (II)

This is easy to see, since the equations in the module

NATURAL are terminating (there is an easy proof using an

RPO order) and confluent (automatically checkable using

the Church-Rosser Checker). Therefore, by the

Church-Rosser Theorem we have:

E ⊢ (x+ y)+ z = x+(y+ z) ⇔ ((x+ y)+ z)!E = (x+(y+ z))!E

But (x+ y) + z and x+ (y + z) are terms in E-normal form.

Therefore, E 6⊢ (x+ y) + z = x+ (y + z). The same argument

also proves, for example, that E 6⊢ x+ y = y + x.

However, we shall see that the initial model of NATURAL

satisfies in fact the associativity and commutativity of +
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Inductive Properties

The point is that associativity and commutativity are

inductive properties of natural number addition; that is,

properties satisfied by the initial model of E, but not in

general by other models of E.

What we need are inductive proof methods based on a more

powerful proof system ⊢ind, satisfying the soundness

requirement,

E ∪B ⊢ind φ ⇒ TΣ/E∪B |= φ.

Also, it should prove all that equational deduction can prove

and more. That is, for formulas φ that are equations it

should satisfy,

E ∪B ⊢ φ ⇒ E ∪B ⊢ind φ.
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Inductive Properties (II)

Because of Gödel’s Incompleteness Theorem, in general we

cannot hope to have completeness of inductive inference,

that is, to have an equivalence

E ∪B ⊢ind φ ⇔ TΣ/E∪B |= φ

although this may be possible for some very specific

theories (Σ, E) for which a complete proof system, or even

an algorithm (a decision procedure), providing this

equivalence exists.

The inductive inference system that we will justify and use

generalizes the usual proofs by natural number induction. In

fact, in our example of associativity of natural number

addition it actually specializes to the usual proof method by

natural number induction.
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Sufficient Completeness is Crucial for Inductive Proofs

fmod NON-STANDARD-NAT is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op a : -> Natural .

op _+_ : Natural Natural -> Natural .

vars N M L : Natural .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

In this module, TΣ/E 6|= a +(a + a) = (a + a)+ a, since both

terms are in normal form and the equations are confluent

and terminating. However, natural number induction on the

declared constructors easily proves associativity of +.

Therefore, induction without sufficient completeness is

unsound.
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Exercises

• Ex.12.1 Consider the NAT-PREFIX specification of

Lecture 2. Prove that the natural numbers IN, with

zero, successor and the addition function are

isomorphic to the initial algebra of that specification.

• Ex.12.2 Give your own algebraic specification of the

Booleans in Maude (use a sort, say Truth, and

constants tt, ff, to avoid any confusion with the

built-in module BOOL in Maude) with disjunction,

conjunction, and negation, and prove that the standard

Booleans are isomorphic to the initial algebra of your

specification.
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