CS 476 Homework \#11 Due 10:45am on 4/14

Note: Answers to the exercises listed below should be given in typewritten form (latex formatting preferred) by the deadline mentioned above. You should also email your answers and the relevant Maude code for Problem 2 to cs476-staff@illinois.edu (as explained below).

1. Call two equational theories (Σ, E) and $\left(\Sigma, E^{\prime}\right)$, equivalent (written $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right)$), iff for each $(u=v) \in E$, $u=E_{E^{\prime}} v$ holds, and for each $\left(u^{\prime}=v^{\prime}\right) \in E^{\prime}, u^{\prime}=_{E} v^{\prime}$ holds. Intuitively, this means that (Σ, E) and $\left(\Sigma, E^{\prime}\right)$ are "essentially" the same theory, but axiomatized with different sets of axioms E and E^{\prime}. Prove:
(a) If $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right)$, then we have the equality of relations: $\left(=_{E}\right)=\left(=_{E^{\prime}}\right)$ (that is, (Σ, E) and (Σ, E^{\prime}) prove the same equalities).
(b) If $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right)$, then $\mathcal{T}_{\Sigma / E}=\mathcal{T}_{\Sigma / E^{\prime}}$ (that is, (Σ, E) and $\left(\Sigma, E^{\prime}\right)$ have the same initial algebra).

For Extra Credit. You can earn 10 more points on this problem (i.e., get a total of 20 points if you did everything perfectly) if you can prove that the equivalence:

$$
(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right) \quad \Leftrightarrow \quad \mathcal{T}_{\Sigma / E}=\mathcal{T}_{\Sigma / E^{\prime}}
$$

is false, that is, only the implication (\Rightarrow) (i.e., (b)) holds; but the implication (\Leftarrow) fails in some cases.
2. Consider the theory of groups, which has an unsorted signature Σ with a constant 1 , a unary function (_) ${ }^{-1}$ and a binary function.$_{-}$and has the following equations G :
(a) $x \cdot 1=x$
(b) $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
(c) $x \cdot(x)^{-1}=1$

Here is a good example of theory equivalence $(\Sigma, G) \equiv\left(\Sigma, G^{\prime}\right)$ and a very good reason for the alternative axiomatization $\left(\Sigma, G^{\prime}\right)$ of the theory of groups: (Σ, G) is not confluent. Instead, you already proved in Homework \# 10 that the following theory, $\left(\Sigma, G^{\prime}\right)$, written in Maude notation as follows (note the fth ... endfth keywords, since this theory has a "loose" semantics and not an initial algebra semantics) is locally confluent and terminating:

```
fth GROUP-CFL is
    sort Group .
    op 1 : -> Group .
    op i : Group -> Group . *** inverse
    op _*_ : Group Group -> Group .
    vars x y z : Group.
    eq(x * y) * z = x * (y * z).
    eq 1 * x = x .
    eq x * 1 = x .
    eq x * i(x) = 1.
    eq i(x) * x = 1.
    eq i(1) = 1.
    eq i(i(x)) = x .
```

```
    eq i(x * y) = i(y) * i(x).
    eq x * (i(x) * y) = y .
    eq i(x) * (x * y) = y .
endfth
```

In this exercise you are now asked to prove that these respective axiomatizations G and G^{\prime} of group theory are equivalent, i.e.,

$$
(\Sigma, G) \equiv\left(\Sigma, G^{\prime}\right)
$$

Hints: (1). In proving that for each $(u=v) \in G u^{\prime}={ }_{G^{\prime}} v^{\prime}$ holds, you should be able to give a mechanical proof in Maude, since you know by Homework \# 10 that (Σ, G^{\prime}) is a decidable theory. Therefore, you should include a screenshot of your mechanical proof and email your code for such a mechanical proof to cs476-staff@illinois.edu. (2). In proving that for each $\left(u^{\prime}=v^{\prime}\right) \in G^{\prime} u^{\prime}={ }_{G} v^{\prime}$ holds, you can take advantage of the fact that in Homework $\# 10$ you proved using the axioms G the following theorems of Group Theory:

- $1 \cdot x=x$
- $(x)^{-1} \cdot x=1$
- $(x \cdot y)^{-1}=y^{-1} \cdot x^{-1}$

Therefore, you can use the above theorems as lemmas in your proof that for each $\left(u^{\prime}=v^{\prime}\right) \in G^{\prime} u^{\prime}={ }_{G} v^{\prime}$.

