## CS 476 Homework \#10 Due 10:45am on 4/6

Note: Answers to the exercises listed below should be given in typewritten form (latex formatting preferred) by the deadline mentioned above. You should email your answers and also all the Maude code and all screenshots of your tool interactions for solving Problem 2 to cs476-staff@illinois.edu.

1. Solve Exercise 100 in STACS.

Note. Your equality proofs should only use the axioms of the theory of groups listed in Exercise 100 in STACS and no other equations. However, equations already proved using such axioms can also be used as lemmas to prove other equations.
2. Consider the following module [available in the Latex version of this homework], specifying an alternative axiomatization of the theory of groups, where i denotes the inverse operation (_) ${ }^{-1}$

```
set include BOOL off .
fmod GROUP is
    sort Group .
    op 1 : -> Group .
    op i : Group -> Group .
    op _*_ : Group Group -> Group .
    var x y z : Group .
    eq (x * y) * z = x * (y * z).
    eq 1 * x = x .
    eq x * 1 = x .
    eq x * i(x) = 1.
    eq i(x) * x = 1.
    eq i(1) = 1.
    eq i(i(x)) = x .
    eq i(x * y) = i(y) * i(x).
    eq x * (i(x) * y) = y .
    eq i(x) * (x * y) = y .
endfm
```

Do the following:
(a) Prove that the module GROUP is locally confluent by using the Church-Rosser Checker tool.
(b) Use the MTA tool to prove the termination of GROUP.

Hint. This module has a termination poof by an $A \vee C$-RPO order.
(c) What can you now conclude from (a) and (b) above about provable equality in the theory of groups using this new axiomatization of the theory of groups instead of the axiomatization in Exercise 100 in STACS? Specifically, giving any equation $u=v$ in the signature of GROUP, can one decide, i.e., effectively and mechanically give a yes/no answer, to the question of wether $u=v$ can be proved using the equations of the theory of groups, and if so, how? Justify your answer.

