
CS476 Last Comprehensive Homework, Due at 11:59pm on Tuesday 5/11

Important Notes: (1) In consideration of the fact that you may be involved in various final exams, you are given a
full week to solve this Comprehensive Homework. Given the very ample time you have available, except for a major,
verifiable emergency, like a grave illness, there will be no extensions possible: any solutions emailed after 11:59pm on
Tuesday 5/11 will get 0 points. Your solutions, as well as all Maude code and all screenshots for exercises requiring
it, should be emailed to cs476-staff@illinois.edu. (2) All Maude code for the different exercises can be obtained
from the Latex file for this Comprehensive Homework, also available in the CS 476 web page.

1. Solve Ex. 11.4 in pg. 32 of Lecture 11.

2. Consider the definition of binary trees with quoted identifiers on the leaves given in Lecture 13. Complete the
module given below (available in the course web page) by defining with confluent and terminating equations
the two functions called leaves and inner, that count, respectively, the number of leaf nodes of a tree, and
the number of nodes in a tree that are not leaf nodes. For example, for the tree ((’a # ’b) # ’c) # ’d there
are 4 leaf nodes (namely ’a, ’b, ’c, and ’d), and 3 inner nodes (corresponding to the 3 different occurrences
of the # operator).

fmod TREE is

protecting QID .

sorts Natural Tree .

subsort Qid < Tree .

op 0 : -> Natural [ctor].

op s : Natural -> Natural [ctor].

op _+_ : Natural Natural -> Natural [assoc comm].

op _#_ : Tree Tree -> Tree [ctor] .

ops leaves inner : Tree -> Natural .

var I : Qid .

vars N M : Natural .

vars T T’ : Tree .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

*** add equations for leaves and inner here

endfm

Once you have defined and tested your definitions for leaves and inner do the following, including screenshots
for each tool used in your solutions for this homework:

• check that it is sufficiently complete using the SCC tool

• state a theorem, in the form of a universally quantified equation, that gives a general law stating, for any
tree T, the exact relation between the numbers leaves(T) and inner(T)

• give a mechanical proof of that theorem using the ITP

3. QLOCK is a mutual exclusion protocol proposed by K. Futatsugi, where the number of processes is unbounded.
There are several versions of it. The following is a very simple specification of QLOCK in Maude:

mod QLOCK is protecting NAT .

sorts NatMSet NatList State .
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subsorts Nat < NatMSet NatList .

op mt : -> NatMSet [ctor] .

op _ _ : NatMSet NatMSet -> NatMSet [ctor assoc comm id: mt] .

op nil : -> NatList [ctor] .

op _;_ : NatList NatList -> NatList [ctor assoc id: nil] .

op {_<_|_|_|_>} : NatMSet NatMSet NatMSet NatMSet NatList -> State [ctor] .

op [_] : Nat -> NatMSet . *** set of first n numbers

op init : Nat -> State . *** initial state, parametric on n

vars n i j : Nat . vars S U W C : NatMSet . var Q : NatList .

eq [0] = mt .

eq [s(n)] = n [n] .

eq init(n) = {[n] < mt | mt | mt | nil >} .

rl [join] : {S i < U | W | C | Q >} => {S < U i | W | C | Q >} .

rl [n2w] : {S < U i | W | C | Q >} => {S < U | W i | C | Q ; i >} .

rl [w2c] : {S < U | W i | C | i ; Q >} => {S < U | W | C i | i ; Q >} .

rl [c2n] : {S < U | W | C i | i ; Q >} => {S < U i | W | C | Q >} .

rl [exit] : {S < U i | W | C | Q >} => {S i < U | W | C | Q >} .

endm

Each process is identified by a natural number. The system’s state (enclosed in curly braces) consists of an
“outside area” (on the left), where processes not currently participating in the protocol reside, and a “protocol
area” (on the right, enclosed in angle brackets), that processes can enter from the outside area by joining the
protocol (rule [join]). The “protocol area” has three sets of processes (normal, waiting, and critical), plus a
waiting queue, where processes willing to enter their critical section can register their name. To ensure mutual
exclusion, a normal process must first register its name at the end of the waiting queue (rule [n2w]). When
its name appears at the front of the queue, it is allowed to enter the critical section (rule [w2c]). When it has
finished using the resources implicitly modeled by being in the critical section, it can go back to normal (rule
[c2n]). Finally, a normal process may leave the protocol, going out to the “outside area” (rule [exit]).

As mentioned above, the number of processes is unbounded. However, the total number of processes in a given
state never changes (although the number of such processes that at any time have actually joined the protocol
(are inside the “protocol area”) may very well change). This means that, instead of considering a single initial
state, we can consider a parametic family of initial states init(n), which has exactly n processes, intially all
in the “outside area,” with the “protocol area” intially empty. Verification of invariants by using the search

command in Maude can be made for different choices of the parameter n. You are asked to verify two important
invariants of QLOCK, namey,

• Mutual Exclusion, i.e., the critical section is either empty or has at most one process, and

• Deadlock Freedom

for the following initial states: init(6), init(7), and init(8).

4. The asynchronous and unordered communication protocol between sender and receiver objects in the COMM

module below is a variant of the example protocol sketched out in Lecture 15.

fmod NAT-LIST is protecting NAT .

sort List .

subsorts Nat < List .

op nil : -> List .

op _;_ : List List -> List [assoc id: nil] .

op length : List -> Nat .
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var L : List .

var N : Nat .

eq length(nil) = 0 .

eq length(N ; L) = s(length(L)) .

endfm

mod COMM is protecting NAT-LIST . protecting QID .

sorts Oid Class Object Msg Msgs Att Atts Configuration State .

subsort Qid < Oid .

subsort Att < Atts . *** Atts is set of attribute-value pairs

subsort Object < Configuration .

subsorts Msg < Msgs < Configuration .

op none : -> Msgs [ctor] .

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

op __ : Msgs Msgs -> Msgs

[ctor config assoc comm id: none] .

op null : -> Atts .

op _,_ : Atts Atts -> Atts [ctor assoc comm id: null] .

op buff:_ : List -> Att [ctor] .

op snd:_ : Oid -> Att [ctor] .

op rec:_ : Oid -> Att [ctor] .

op cnt:_ : Nat -> Att [ctor] .

op ack-w:_ : Bool -> Att [ctor] .

ops Sender Receiver : -> Class [ctor] .

op <_:_|_> : Oid Class Atts -> Object [ctor] .

msg to_from_val_cnt_ : Oid Oid Nat Nat -> Msg [ctor] .

msg to_from_ack_ : Oid Oid Nat -> Msg [ctor] .

op {_} : Configuration -> State [ctor] .

op init : Oid Oid List -> State .

vars N M : Nat . var L : List . vars A B : Oid . var C : Configuration .

rl [snd] : {< A : Sender | buff: (N ; L), rec: B, cnt: M, ack-w: false > C}

=>

{(to B from A val N cnt M)

< A : Sender | buff: L, rec: B, cnt: M, ack-w: true > C} .

rl [rec] : {< B : Receiver | buff: L, snd: A, cnt: M >

(to B from A val N cnt M) C}

=>

{< B : Receiver | buff: (L ; N), snd: A, cnt: s(M) >

(to A from B ack M) C} .

rl [ack-rec] : {< A : Sender | buff: L, rec: B, cnt: M, ack-w: true >

(to A from B ack M) C}

=>

{< A : Sender | buff: L, rec: B, cnt: s(M), ack-w: false > C} .

eq init(A,B,L) = {< A : Sender | buff: L, rec: B, cnt: 0, ack-w: false >

< B : Receiver | buff: nil, snd: A, cnt: 0 >} .

endm

rew init(’a,’b,(1 ; 2 ; 3)) .

3



rew init(’a,’b,(1 ; 2 ; 3 ; 4)) .

rew init(’a,’b,(1 ; 2 ; 3 ; 4 ; 5)) .

The only differences are: (1) the buffers now are not separate objects: they are attributes of sender and receiver
objects; (2) the sender, before sending the next item in its buffer, awaits until after receiving an ack from the
receiver for the previous item; and (3) to facilitate the definition of state predicates, the entire configuration
of objects and messages in enclosed in curly braces as a term of sort State. You may want to run a few tests
cases. For example, those given in the rewrite commands after the COMM module, to get a better feeling for how
this protocol works. If you wish to see a detailed trace of the executions, you can type in Maude:

Maude> set trace on .

The point about this exercise is to make you familiar with parametric state predicates and their model checking
verification. The key idea is that, as illustrated in Problem 3 above by the QLOCK example, we may be interested
in verifying properties, not for a single initial state init, but for a parametric family of initial states, defined
using and operator:

op init : S1 ... Sn -> State .

and giving appropriate equations, were the sorts S1 ... Sn are its parameter sorts. But then, some property
P, which we want to verify is an invariant for all these initial states, may also be itself parametric in the exact
same sense, i.e., be a Boolean-valued state predicate of the form:

op P : State S1 ... Sn -> Bool .

If u1 ... un are ground terms of the parameter sorts S1 ... Sn, then we can model check property P as an
invariant from the initial state init(u1 ... un) by failing to get any solutions for the search command:

search init(u1 ... un) =>* X:State s.t. P(X:State,u1,...,un) =/= true .

Specifically, you asked to correctly define an (unparametric) state predicate [which is not an invariant], and
two parametric state predicates [corresponding to two invariants], whose operator declarations are given in the
COMM-PREDS module below. The state predicates are the following:

• Enabled: a state is not a deadlock state and can therefore transition to some other state.

• In-Order (Communication). Any initial state of the form init(A,B,L) satisfies the parametric state
predicate In-Order(X:State,A,B,L) (which you are asked to define) as an invariant, where
In-Order(X:State,A,B,L) essentially states that if in state X:State L1 is the list in the buffer of the
receiver B, then the list L1 is a prefix sublist of the list L. This means that the protocol achieves in-order-
communication in spite of being asynchronous.

• Succcess (of the Communication). Any initial state of the form init(A,B,L) satisfies the paramet-
ric state predicate Success(X:State,A,B,L) (which you are asked to define) as an invariant, where
Success(X:State,A,B,L) essentially states that either X:State is Enabled, or B holds L in its buffer.
Since this protocol is terminating, this invariant ensures that, not only it delivers data in order, but it
does indeed succeed in always delivering all the data initially stored in the sender’s buffer.

You can define these predicates by giving your definition [and that of any auxiliary functions you may need]
in the following module importing COMM. You can make use the the [owise] feature in Maude to define the
false case for each predicate. Hint. In order to define the Success(X:State,A,B,L) predicate more easily,
you may find it useful to define as well an auxiliary parametric predicate.
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mod COMM-PREDS is

protecting COMM .

op Enabled : State -> Bool .

ops In-Order Success : State Oid Oid List -> Bool .

var MS : Msgs . var C : Configuration . vars L L1 L2 : List .

vars A B : Oid . vars N M : Nat . var T : Bool . var S : State .

*** include here your equational definition of Enabled(S)

*** include here your equational definition of In-Order(S,A,B,L)

*** include here your equational definition of Success(S,A,B,L)

endm

After you have defined [hopefully correctly] the above state predicates, you are asked to verify in Maude
the two parametric invariants In-Order(S,A,B,L) and Success(S,A,B,L) for three initial states of the form
init(A,B,L) where A is ’a, B is ’b, and L is, respectively: (1 ; 2 ; 3), (1 ; 2 ; 3 ; 4), and (1 ; 2 ; 3

; 4 ; 5).

The entire template to be filled in, containing all the modules for this problem is, therefore:

fmod NAT-LIST is protecting NAT .

sort List .

subsorts Nat < List .

op nil : -> List .

op _;_ : List List -> List [assoc id: nil] .

op length : List -> Nat .

var L : List .

var N : Nat .

eq length(nil) = 0 .

eq length(N ; L) = s(length(L)) .

endfm

mod COMM is protecting NAT-LIST . protecting QID .

sorts Oid Class Object Msg Msgs Att Atts Configuration State .

subsort Qid < Oid .

subsort Att < Atts . *** Atts is set of attribute-value pairs

subsort Object < Configuration .

subsorts Msg < Msgs < Configuration .

op none : -> Msgs [ctor] .

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

op __ : Msgs Msgs -> Msgs

[ctor config assoc comm id: none] .

op null : -> Atts .

op _,_ : Atts Atts -> Atts [ctor assoc comm id: null] .

op buff:_ : List -> Att [ctor] .

op snd:_ : Oid -> Att [ctor] .

op rec:_ : Oid -> Att [ctor] .

op cnt:_ : Nat -> Att [ctor] .

op ack-w:_ : Bool -> Att [ctor] .

ops Sender Receiver : -> Class [ctor] .

op <_:_|_> : Oid Class Atts -> Object [ctor] .
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msg to_from_val_cnt_ : Oid Oid Nat Nat -> Msg [ctor] .

msg to_from_ack_ : Oid Oid Nat -> Msg [ctor] .

op {_} : Configuration -> State [ctor] .

op init : Oid Oid List -> State .

vars N M : Nat . var L : List . vars A B : Oid . var C : Configuration .

rl [snd] : {< A : Sender | buff: (N ; L), rec: B, cnt: M, ack-w: false > C}

=>

{(to B from A val N cnt M)

< A : Sender | buff: L, rec: B, cnt: M, ack-w: true > C} .

rl [rec] : {< B : Receiver | buff: L, snd: A, cnt: M >

(to B from A val N cnt M) C}

=>

{< B : Receiver | buff: (L ; N), snd: A, cnt: s(M) >

(to A from B ack M) C} .

rl [ack-rec] : {< A : Sender | buff: L, rec: B, cnt: M, ack-w: true >

(to A from B ack M) C}

=>

{< A : Sender | buff: L, rec: B, cnt: s(M), ack-w: false > C} .

eq init(A,B,L) = {< A : Sender | buff: L, rec: B, cnt: 0, ack-w: false >

< B : Receiver | buff: nil, snd: A, cnt: 0 >} .

endm

rew init(’a,’b,(1 ; 2 ; 3)) .

rew init(’a,’b,(1 ; 2 ; 3 ; 4)) .

rew init(’a,’b,(1 ; 2 ; 3 ; 4 ; 5)) .

mod COMM-PREDS is

protecting COMM .

op Enabled : State -> Bool .

ops In-Order Success : State Oid Oid List -> Bool .

var MS : Msgs . var C : Configuration . vars L L1 L2 : List .

vars A B : Oid . vars N M : Nat . var T : Bool . var S : State .

*** include here your equational definition of Enabled(S)

*** include here your equational definition of In-Order(S,A,B,L)

*** include here your equational definition of Success(S,A,B,L)

endm

5. The following example is a simplified version of Lamport’s bakery protocol. This is an infinite-state protocol
that achieves mutual exclusion between processes by the usual method common in bakeries and deli shops:
there is a number dispenser, and customers are served in sequential order according to the number that they
hold. A simple Maude specification for the case of two processes is as follows:
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set include BOOL off .

fmod NAT-ACU is

sort Nat .

ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

endfm

mod BAKERY is

protecting NAT-ACU .

sorts Mode BState .

ops sleep wait crit : -> Mode [ctor] .

op <_,_,_,_> : Mode Nat Mode Nat -> BState [ctor] .

op initial : -> BState .

vars P Q : Mode .

vars X Y : Nat .

eq initial = < sleep, 0, sleep, 0 > .

rl [p1_sleep] : < sleep, X, Q, Y > => < wait, Y + 1, Q, Y > .

rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .

rl [p1_wait] : < wait, X, Q, X + Y > => < crit, X, Q, Y + X > .

rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, X + 1 > .

rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .

rl [p2_wait] : < P, X + Y + 1, wait, Y > => < P, X + Y + 1, crit, Y > .

rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .

endm

In this module, states are represented by terms of sort BState, which are constructed by a 4-tuple operator
<_,_,_,_> ; the first two components describe the status of the first process (the mode it is currently in, and
its priority as given by the number according to which it will be served), and the last two components the
status of the second process. The rules describe how each process passes from being sleeping to waiting, from
waiting to its critical section, and then back to sleeping.

We would like to verify two basic invariants about this protocol, namely:

• mutual exclusion, that is, the two processes are never simultaneously in their critical section, and

• deadlock freedom.

However, since the set of states reachable from initial is infinite, we cannot use the search command to
fully verify these two invariants since, if the invariants are satisfied by BAKERY, Maude will never come back.
However, we can partially verify the above two invariants up to a certain depth bound.

You are asked to use bounded model checking to partially verify up to depth 106 both the mutual exclusion and
the deadlock freedom invariants of BAKERY from the initial state initial.
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