Classification
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Images are 28 x 28 pixels

Represent input image as a vector x € R84
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Learn a classifier f(x) such that,
f:x—4{0,1,2,3,4,5,6,7,8,9}
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K-nearest neighbor classification

Algorithm

« For each test point, x, to be classified, find the K nearest
samples in the training data

 Classify the point, x, according to the majority vote of their

class labels
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Distance functions
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Choice of k
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Choice of k

the data NN classifier 5-NN classifier
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X2

Binary kNN Classification (k=1)

X2

Binary kNN Classification Training Set

Binary kNN Classification (k=5)

Binary kNN Classification (k=25)




Leave-one-out cross validation

e For a dataset with N examples, perform N experiments

e For each experiment use N-1 examples for training and the remaining
example for testing

Total number of examples
< »

Experiment 1

Experiment 2

Experiment 3

Single test example

Experiment N




K-fold cross validation

e For each of K experiments, use K-1 folds for training and the remaining
one for testing

Total number of examples

Experiment 1

Experiment 2

Experiment 3

/ Test examples
Experiment 4

Classitication Error = Average classification error on K folds



Linear Classification
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Inseparability

* Real world problems: there may not exist a hyperplane
that separates cleanly

* Solution to this “inseparability” problem: map data to

higher dimensional space
* Called the “feature space”, as opposed to the original “input
space’
* Inseparable training set can be made separable with proper
choice of feature space



Feature map
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Linear classifier

A linear classifier has the form

J(x) =0

fx)=w'x+b o

A A
A A,

A AAA ,
AsdA

A AA

F(x) > 0

* In 2D the discriminant is a line
e W is the normal to the line, and b the bias

« W is known as the weight vector




Linear classifier

A linear classifier has the form

f(x)=w'x+b

L3

 in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to "carry’ the training data
For a linear classifier, the training data is used to learn w and then discarded

Only w is needed for classifying new data



Good and bad linear classifiers

* maximum margin solution: most stable under perturbations of the inputs



Support Vector Machine

Two popular implementations

C @ svmlight.joachims.org

SVMlight

Support Vector Machine

Author: Thorsten Joachims <thorsten@ joachims.org>
Cornell University
Department of Computer Science

C | & Secure | https://www.csie.ntu.edu.tw/~cjlin/libsvm/

LIBSVM -- A Library for Support Vector Machines
Chih-Chung Chang and Chih-Jen Lin
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Linear Support Vector Machine

e Learning the SVM can be formulated as an optimization:

2 ' —
max —— subject to w ! x;+b =1 Ty =+1

— ) fore=1...N

e Or equivalently

min lw||? subject to y; (waZ- +b) >1fori=1...N

e [ his is a quadratic optimization problem subject to linear
constraints and there is a unigque Mminimum



Inseparable case
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Linear SVM

The optimization problem becomes

AT
: 2
min w||<+C &
weRd g, cRT ” H zz: ‘

subject to
( Te. e .
y; (W xz+b)>1 (& fori=1...N

e Every constraint can be satisfied if &; is sufficiently large

e C is a regularization parameter:
— small C allows constraints to be easily ignored — large margin
— large C makes constraints hard to ignore — narrow margin

— C = oo enforces all constraints: hard margin

e [ his is still a quadratic optimization problem and there is a
unigue minimum. Note, there is only one parameter, C.



Classification vs Regression

Classification Regression

Discrete Continuous



Regression
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Protein structure prediction as regression

X Y

AVITGACERDLQCG
KGTCCAVSLWIKSV
RVCTPVGTSGEDCH
PASHKIPFSGQRMH >
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SPKKFKCLSK

Regression task: given sequence predict
3D structure

3D coordinates and angles



Stock price prediction

S&P/TSX COMPOSITE
as of 4-Fpr-2008
15000
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13000
12000 +
11000 ¢

10000
600.0

gdoo.o ¥ "
L=
0.0

:opgri.ght 2008 Yahoo! Inc. http://finance .yahoo .con/

» Task is to predict stock price at future date
* This is a regression task, as the output is continuous



Linear regression




Nonlinear regression
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When does linear regression work?
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K nearest neighbor regression
Algorithm

» For each test point, x, find the K nearest samples x; in the
training data and their values y;

K
»  Output is mean of their values f(x) = % Z Yi
1=1

« Again, need to choose (learn) K




Nearest neighbor regression
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Nearest neighbor regression
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extrapolation interpolation




Filling patches in images

Initial image

Matched
Images
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Linear regression

e Linear regression is a simple approach to supervised

learning. It assumes that the dependence of Y on
X1,X2,...X, 1s linear.
e True regression functions are never linear!

e although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.



How to measure the accuracy of linear regression models

errors

Errora \
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Linear Regression

Fitting error: €
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Linear Regression
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Assumption: errors are Gaussian noises

y=XP+e
g" = arg mﬁiﬂ > (i — Y BiXij)
? J



Linear Regression

§" =argmin ) (yi = ) 8;X.;)°
v J
= argmin(y — XB)" (y — X )

= (X' X)Xy

Question: How to derive the closed-form solution?



Clustering



Finding hidden structure in data
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Expression analysis

Blood

-

Brain

Principal Component 2
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Single-cell expression analysis

Tissues

Cell-type
maps

Healthy

Pathological
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Clustering: examples

Image segmentation
Goal: Break up the image into meaningful or
perceptually similar regions

[Slide from James Hayes]



Network clustering




Clustering

» Basic idea: group together similar instances
 Example: 2D point patterns




Clustering

» Basic idea: group together similar instances
 Example: 2D point patterns

« What could “similar” mean?
— One option: small Euclidean distance (squared)

dist(@, ) = |12 — 71

— Clustering results are crucially dependent on the measure of
similarity (or distance) between “points” to be clustered




@ Given: N unlabeled examples {xi,...,xy}; the number of partitions K

@ Goal: Group the examples into K partitions

oS W 6 5 4. 5 ga 9. 0§

(a) Input data (b) Desired clustering
@ The only information clustering uses is the similarity between examples

@ Clustering groups examples based of their mutual similarities



Clustering algorithms

Q@ Flat or Partitional clustering (K-means, Gaussian mixture models, etc.)
@ Partitions are independent of each other
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@ Hierarchical clustering (e.g., agglomerative clustering, divisive clustering)

o Partitions can be visualized using a tree structure (a dendrogram)

@ Does not need the number of clusters as input

o Possible to view partitions at different levels of granularities (i.e., can
refine/coarsen clusters) using different K
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K-means

o Input: N examples {xi,...,xy} (x» € RP); the number of partitions K

o Initialize: K cluster centers u1,..., uk. Several initialization options:

o Randomly initialized anywhere in R
@ Choose any K examples as the cluster centers

@ lterate:
@ Assign each of example x, to its closest cluster center

={n: k=argmin|x, — [’}

(Ck is the set of examples closest to pix)
o Recompute the new cluster centers 14 (mean/centroid of the set Cy)

Hk = |Ck| an

neCy

@ Repeat while not converged






























K-means for segmentation




When will K-means fail?

Non-convex/non-round-shaped clusters: Standard K-means fails!
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Hierarchical clustering

A hierarchical approach can be useful when considering versatile
cluster shapes:

8 g8
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X
X

10-means

By first detecting many small clusters, and then merging them, we
can uncover patterns that are challenging for partitional methods.



Agglomerative clustering

* Agglomerative clustering:
— First merge very similar instances

— Incrementally build larger clusters out . ® o
of smaller clusters o °°, @‘
* Algorithm: e ¢ ®oe
— Maintain a set of clusters o "o .
— Initially, each instance in its own o
cluster . Iy
— Repeat: o
* Pick the two closest clusters
* Merge them into a new cluster
« Stop when there’ s only one cluster left
: -
* Produces not one clustering, but a { \
family of clusterings represented f{ .93\.

by a dendrogram



Similarity?

< >

We need a notion of similarity between clusters.



Single linkage uses the minimum distance.
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Complete linkage uses the maximum distance.
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Group average linkage uses the average distance between
groups.
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Mouse tumor data from [Hastie et al.]




Appl

ication to breast cancer expression data
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