1. Break query sequence into words

MEAAVKEEISVEDEAVDKNI
MEA EAA

AAV
AVK

Break query into words:

KEE
EEI
EIS
ISV

2. Find database hits

- Find exact matches to query words
- Can be done in efficiently
- Hashing
- Alternatively AC finite state machine

2. Find database hits

ELEPRRPRYRVPDVLVADPPIARLSVSGRDENSVELTMEAT

3. Extend hits

1. Find "seeds" (initial matches) of a fixed length (e.g. 11)
2. Try extending an alignment from each seed
...atcgtatcgtatcgtactgctggcctagtggggga....
...ctcgtcgatgctagtcgtactgctgatgctatatatatattaatg...

How to handle possible mismatches in words?

MVRERKCILCHIVYGSKKEMDEHMRSMLHHRELENLKGRDIS Query word, W=3 for proteins \downarrow (W=11 for nucleotides) Word Score (BL-62)

GSK 15
GAK 12
GNK 12
GTK 12
GSR 12
Neighbor words GDK 11
GQK 11
GEK 11
GGK 11
GKK 11
GSQ 11
GSE 11

How to handle possible mismatches in words?

First step:

For each position p of the query, find the list or words of length w scoring more than T when paired with the word starting at p :

How to handle possible mismatches in words?

Second step:

For each words list, identify all exact matches with DB sequences:

```
p-word words list
DB sequences
```


How to handle possible mismatches in words?

Third step:

For each word match ("hit»), extend ungapped alignment in both directions. Stop when S decreases by more than X from the highest value reached by S .

Statistics: Question

- Given two random sequences of lengths m and n
- What is the probability that they will produce an MSP score of $>=S$?

Statistics: more intuition

The probability will depend on:

- How long is are the sequences (the longer the easier to get a local score above threshold by chance)
- Scoring matrix
- Distribution of amino acids in each sequence

Statistics: Intuition

Frequency of aa occurring in nature

Random sequence 1

```
Ala 0.1
Val 0.3
Trp 0.01
```


\longrightarrow SCORE

Random sequence 2

Real sequence 1

Real sequence 2

Simulation

1. Generate many random sequence pairs

2. Compute the distribution of the SCOREs

Statistical test

Extreme value distribution

Karlin and Alschul observed that in the framework of local alignments without gaps: the distribution of random sequence alignment scores follow an EVD.

Extreme value distribution

$$
P(Z \geq x)=1-\exp \left[-e^{-\Lambda(x-\mu)}\right]
$$

P-value $=$ the probability of obtaining a score equal or greater than x by chance

Compute a p-value

- The probability of observing a score >=4 is the area under the curve to the right of 4.
- For an Unscaled EVD:

$$
P(S \geq x)=1-e^{\left(-e^{-x}\right)}
$$

$$
P(S \geq 4)=1-e^{\left(-e^{-4}\right)}
$$

$$
P(S \geq 4)=0.018149
$$

Parameters

$$
\begin{equation*}
P(Z \geq x)=1-\exp \left[-e^{-\Lambda(x-\mu)}\right] \tag{1}
\end{equation*}
$$

μ, λ : parameters depend on the length and composition of the sequences and on the scoring system: μ is the mode (highest point) of the distribution and λ is the decay parameter -They can me estimated by making many alignments of random or shuffled sequences.

Statistical test

Significance: P-value and E-value

In a database of size $\mathrm{N}: \mathrm{P} \times \mathrm{N}=\mathrm{E}$

- P-value:

Probability that an alignment with this score occurs by chance in a database of size N .
The closer the P -value is towards 0 , the better the alignment

- E-value:

Number of matches with this score one can expect to find by chance in a database of size N .
The closer the E -value is towards 0 , the better the alignment
\rightarrow Smaller E-value, more significant in statistics
Bigger E-value, by chance
$E\left[\#\right.$ occurrences of a string of length m in reference of length L] $\sim L / 4^{m}$

Parameters

$$
\begin{equation*}
P(Z \geq x)=1-\exp \left[-e^{-\Lambda(x-\mu)}\right] \tag{1}
\end{equation*}
$$

μ, λ : parameters depend on the length and composition of the sequences and on the scoring system: μ is the mode (highest point) of the distribution and λ is the decay parameter -They can me estimated by making many alignments of random or shuffled sequences. - For alignments without gaps they can be calculated from the scoring matrix and then:

$$
\begin{equation*}
P(Z \geq x)=1-\exp \left[-K m n e^{-\Lambda x}\right] \tag{2}
\end{equation*}
$$

K : is a constant that depend on the scoring matrix values and the frequencies of the different residues in the sequences.
m, n : sequence lengths

E-value

Approximation:
if x is very small, then $1-\exp (-x)$ can be approximated by x

Therefore,

$$
P(Z>=x) \sim e^{-\lambda(x-\mu)}=K m n e^{-\lambda x}
$$

So E-value = DatabaseLength * p-value

$$
\mathrm{E} \text {-value }=\mathrm{KNme}^{-\lambda x}
$$

where N is the database size (not the aligned length n)

Genomics

Sequencing tech

1980s-1990s: | ${ }^{\text {st }}$ Gen
Automated Capillary
Sequencing
384kbp / day

2000s: $2^{\text {nd }}$ Gen
Pyrosequencing, SOLiD Sequencing-by-Synthesis

IGbp+ / day

Sequencing tech: next generation

Cost per raw megabase of DNA sequence

Until 2007: Sanger sequencing
Starting in 2008: next-generation (454, Illumina, SOLiD)

What do we get from sequencing?

Sequencing technologies produce sbort reads from random locations in the DNA sample

How to analyze these reads?

Position of individual reads on the target DNA is not known

Solved by computational methods:

- mapping if target DNA is known
- assembly if it is not known

Mutation identification: Mapping

How does your genome compare to the reference?

Genome projects: Assembly

1976	MS2 (RNA virus) 40 kB
1988	Human genome sequencing project (15 years)
1995	bacterium H. influenzae 2 MB, shotgun (TIGR)
1996	S. cerevisiae 10 MB, BAC-by-BAC (Belgium, UK)
1998	C. elegans 100 MB, BAC-by-BAC (Wellcome Trust)
1998	Celera: human genome in three years!
2000	D. melanogaster 180 MB, shotgun (Celera, Berkeley)
2001	2x human genome 3 GB (NIH, Celera)
after 2001	mouse, rat, chicken, chimpanzee, dog,...
2007	Genomes of Watson and Venter (454)

Use sequencing for other types of data

RNA-seq

Assembly

Many copies of the DNA

Shear it, randomly breaking them into many small pieces, read ends of each:

Assemble into original genome:

Assembly

Computational Challenge: assemble individual short fragments (reads) into a single genomic sequence ("superstring")

Shortest common superstring

Problem: Given a set of strings, find a shortest string that contains all of them
Input: Strings $s_{1}, s_{2}, \ldots, s_{n}$
Output: A string s that contains all strings s_{1}, s_{2}, $\ldots ., s_{n}$ as substrings, such that the length of s is minimized

Shortest common superstring

Set of strings: $\quad\{000,001,010,011,100,101,110,111\}$

Concatenation
Superstring
000001010011100101110111

Any ideas?

Directed Graph

Directed graph $G(V, E)$ consists of set of vertices, V and set of directed edges, E

Directed edge is an ordered pair of vertices. First is the source, second is the sink.

Vertex is drawn as a circle
Edge is drawn as a line with an arrow connecting two circles

Vertex also called node or point

Edge also called arc or line

Directed graph also called digraph

Overlap Graph

Below: overlap graph, where an overlap is a suffix/prefix match of at least 3 characters

A vertex is a read, a directed edge is an overlap between suffix of source and prefix of sink

Vertices (reads): $\{a:$ CTCTAGGCC, $b:$ GCCCTCAAT, $c:$ CAATTTTT \}
Edges (overlaps): $\{(a, b),(b, c)\}$

$a:$ CTCTAGGCC $\underset{3}{\longrightarrow} b$: GCCCTCAAT $\underset{4}{\longrightarrow} c:$ CAATTTTT

CTCTAGGCC
$\|_{\text {GCCCTCAAT }}$

GCCCTCAAT
||||
CAATTTTT

Example

Original string: GCATTATATATTGCGCGTACGGCGCCGCTACA

Shortest common superstring problem is hard

Can we solve it?
Imagine a modified overlap graph where each edge has cost $=-$ (length of overlap)

SCS corresponds to a path that visits every node once, minimizing total cost along path

That's the Traveling Salesman Problem (TSP), which is NP-hard!

Shortest common superstring problem is hard

Say we disregard edge weights and just look for a path that visits all the nodes exactly once

That's the Hamiltonian Path problem: NP-complete

Indeed, it's well established that SCS is NP -hard

Matching a superstring to a set of short reads

Assume we have a set S of reads with length k (k-mers)
Goal: Find a string that can be exactly split in to set S.

$$
S=\{A T G \text { AGG TGC TCC GTC GGT GCA CAG }\}
$$

Overlap graph approach

Assume we have a set S of reads with length k (k-mers)
Goal: Find a string that can be exactly split in to set S.
$S=\{$ ATG AGG TGC TCC GTC GGT GCA CAG $\}$
H atg agg tgc tcc gtc ggt gca cag

> ATG CAGGTCC

Path visited every VERTEX once

Overlap graph approach is hard

Assume we have a set S of reads with length k (k-mers)
Goal: Find a string that can be exactly split in to set S.
$S=\{$ ATG AGG TGC TCC GTC GGT GCA CAG $\}$
H atg agg tgc tcc gtc ggt gca cag

ATG CAGGTCC
Path visited every VERTEX once

