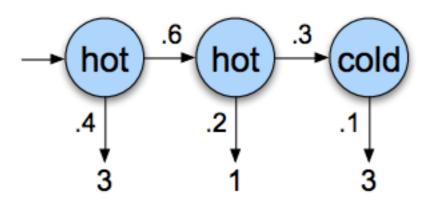
Joint and marginal probabilities

Joint:
$$P(O,Q) = P(O|Q) \times P(Q) = \prod_{i=1}^{n} P(o_i|q_i) \times \prod_{i=1}^{n} P(q_i|q_{i-1})$$

$$P(3\ 1\ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{cold})$$



Marginal:

$$P(O) = \sum_{Q} P(O,Q) = \sum_{Q} P(O|Q)P(Q)$$

 $P(3 \ 1 \ 3) = P(3 \ 1 \ 3, \text{cold cold cold}) + P(3 \ 1 \ 3, \text{cold cold hot}) + P(3 \ 1 \ 3, \text{hot hot cold}) + \dots$

How to compute the probability of observations

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

$$P(O) = \sum_{Q} P(O,Q) = \sum_{Q} P(O|Q)P(Q)$$

For an HMM with N hidden states and an observation sequence of T observations, there are N^T possible hidden sequences. For real tasks, where N and T are both large, N^T is a very large number, so we cannot compute the total observation likelihood by computing a separate observation likelihood for each hidden state sequence and then summing them.

 $\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$ represents the probability of being in state j after seeing the first t observations, given the automaton λ . The value of each cell $\alpha_t(j)$ is computed by summing over the probabilities of every path that could lead us to this cell.

Here, $q_t = j$ means "the tth state in the sequence of states is state j". We compute this probability $\alpha_t(j)$ by summing over the extensions of all the paths that lead to the current cell. For a given state q_j at time t, the value $\alpha_t(j)$ is computed as

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(o_t)$$

Forward algorithm

 $a_{t-1}(i)$ the **previous forward path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

1. Initialization:

$$\alpha_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

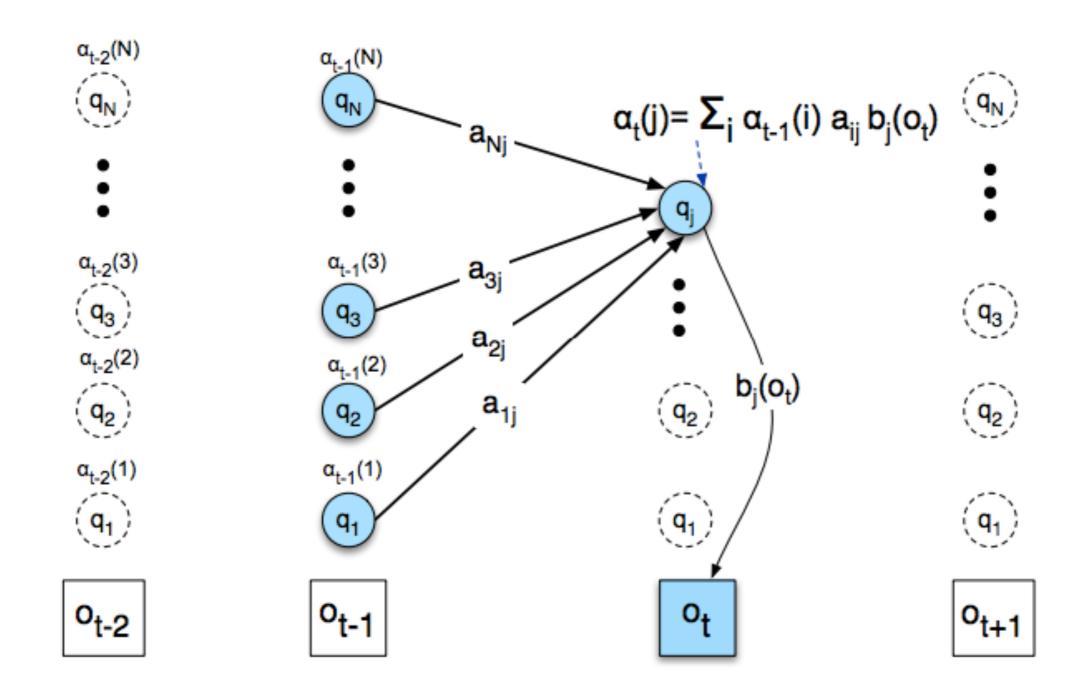
2. Recursion (since states 0 and F are non-emitting):

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

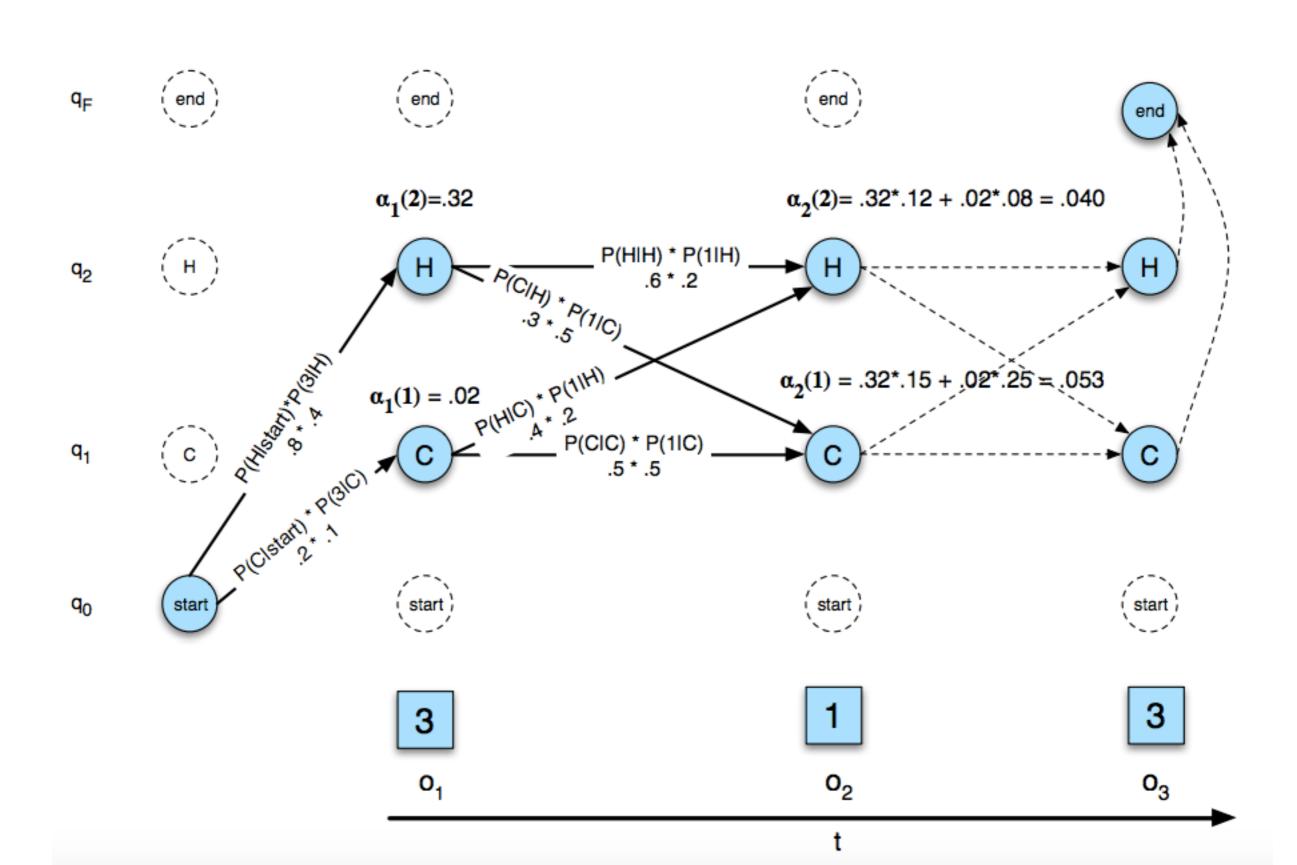
3. Termination:

$$P(O|\lambda) = \alpha_T(q_F) = \sum_{i=1}^N \alpha_T(i) a_{iF}$$

Forward algorithm



Forward algorithm



Decoding: finding the most probable states

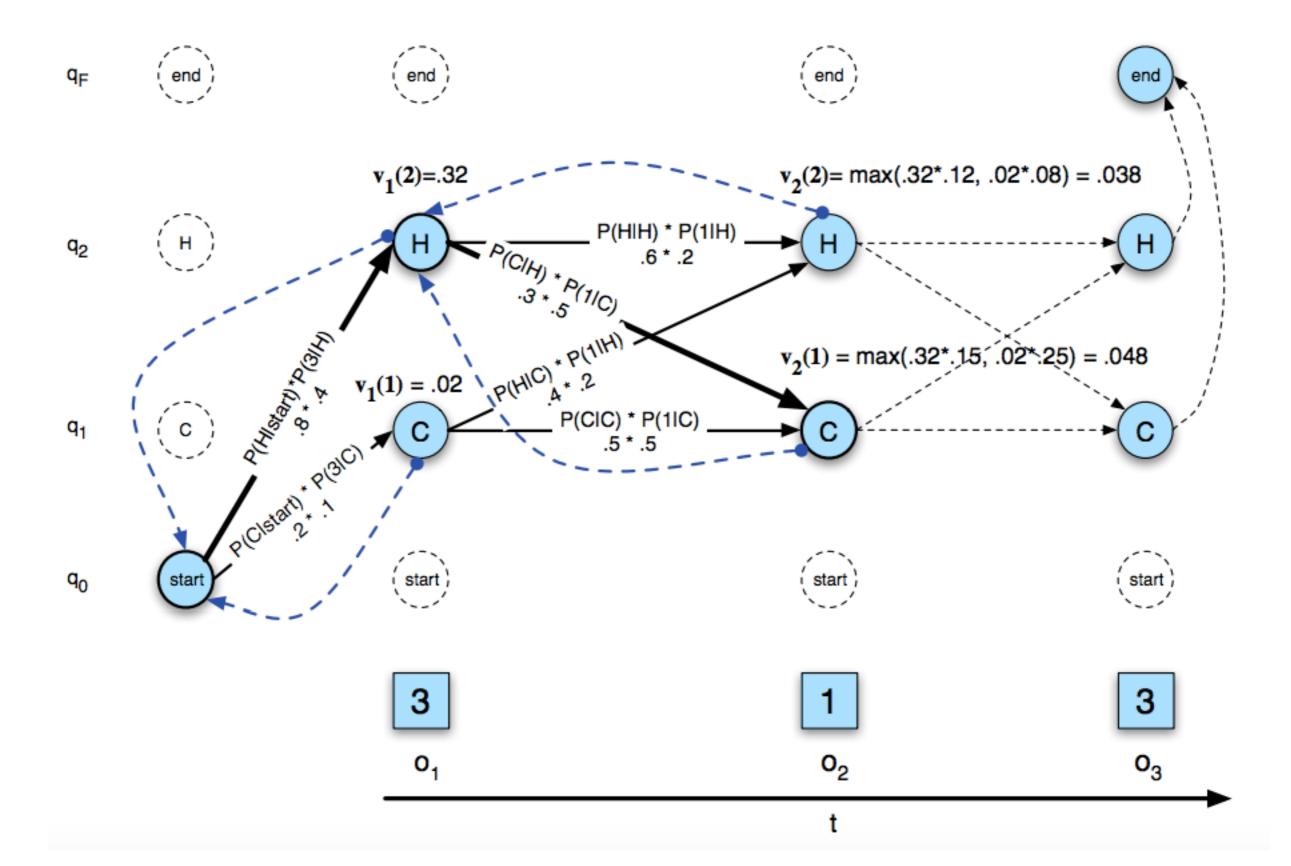
Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

Similar to the forward algorithm, we can define the following value:

$$v_t(j) = \max_{q_0, q_1, \dots, q_{t-1}} P(q_0, q_1, \dots, q_{t-1}, o_1, o_2, \dots, o_t, q_t = j | \lambda)$$

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

$v_{t-1}(i)$	the previous Viterbi path probability from the previous time step
a_{ij}	the transition probability from previous state q_i to current state q_j
$b_j(o_t)$	the state observation likelihood of the observation symbol o_t given
	the current state j



Viterbi algorithm

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

 $bt_1(j) = 0$

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

$$bt_t(j) = \underset{i=1}{\operatorname{argmax}} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

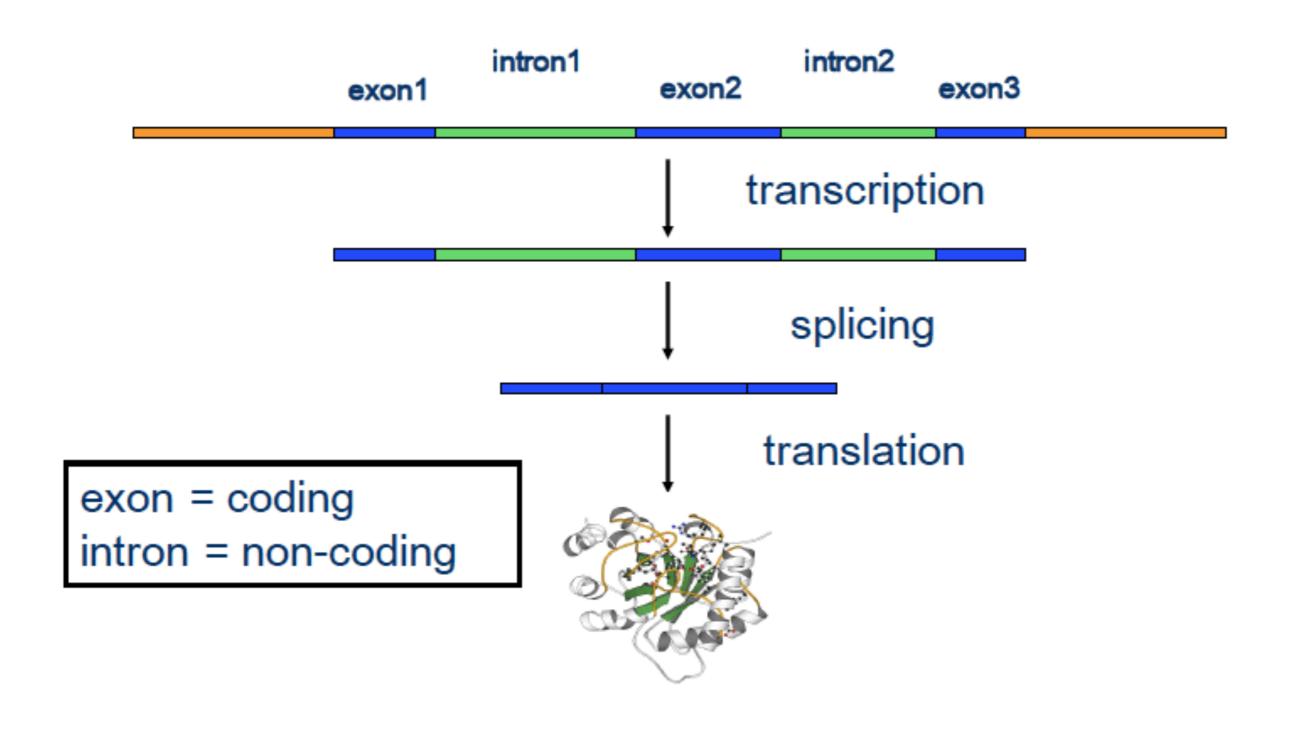
3. Termination:

The best score:
$$P*=v_T(q_F)=\max_{i=1}^N v_T(i)*a_{iF}$$

The start of backtrace: $q_T*=bt_T(q_F)=\argmax_{i=1}^N v_T(i)*a_{iF}$

Gene finding

Gene finding



Gene finding

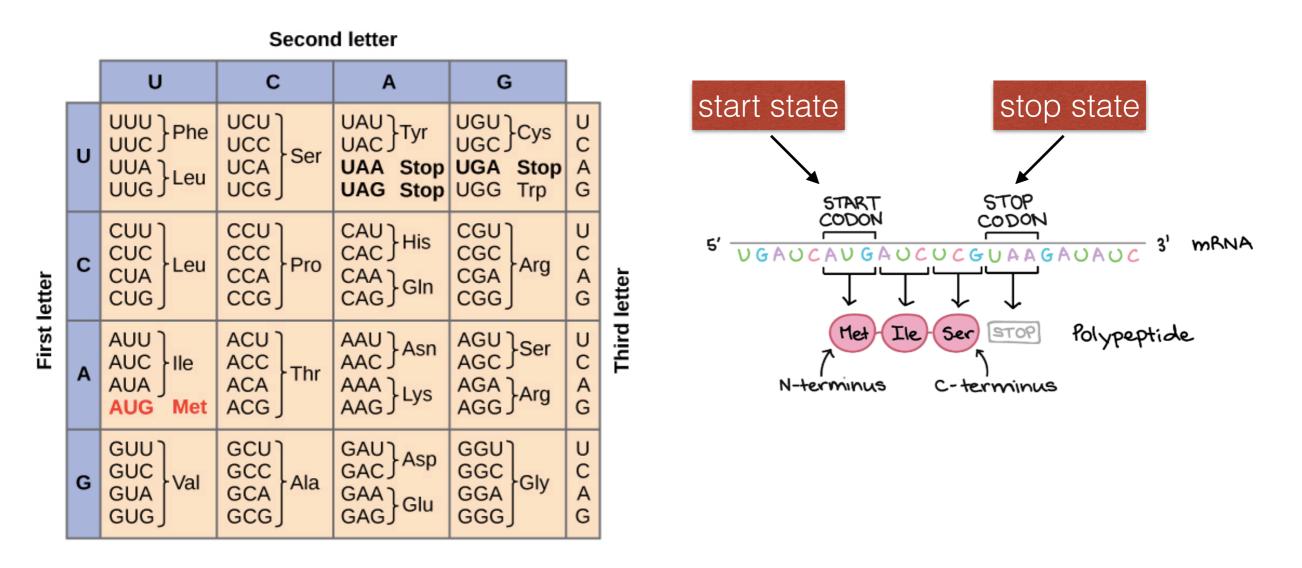
- In human genome, ~3% of DNA sequence is genes
- Lot of "junk" DNA between genes, and even inside genes (between exons).
- Due to the reverse complement, one gene can start from either direction.
- Gene finding must deal with these.

Gene finding for bacterial genomes

In bacteria, there is no intron in the coding region.

Gene finding for bacterial genomes

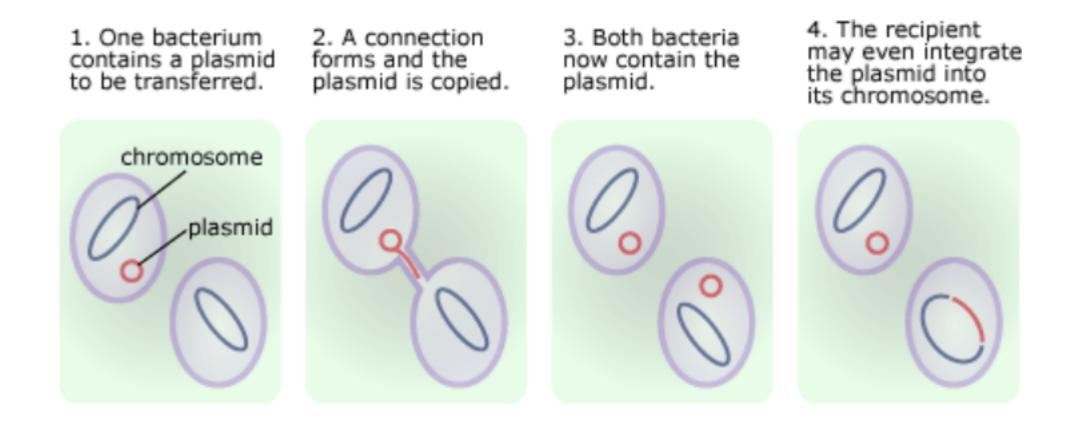
In bacteria, there is no intron in the coding region.



Codon usage can be different between the noncoding regions and coding regions.

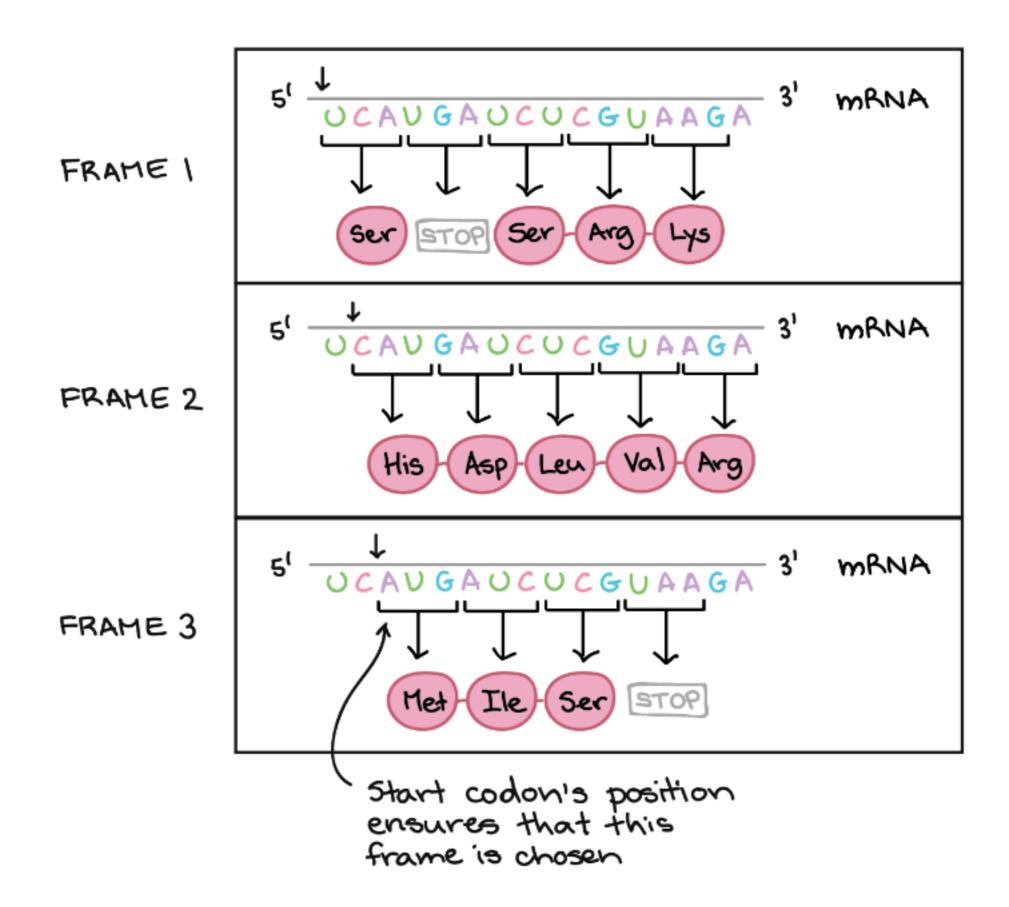
Gene finding for bacterial genomes

Horizontal gene transfer



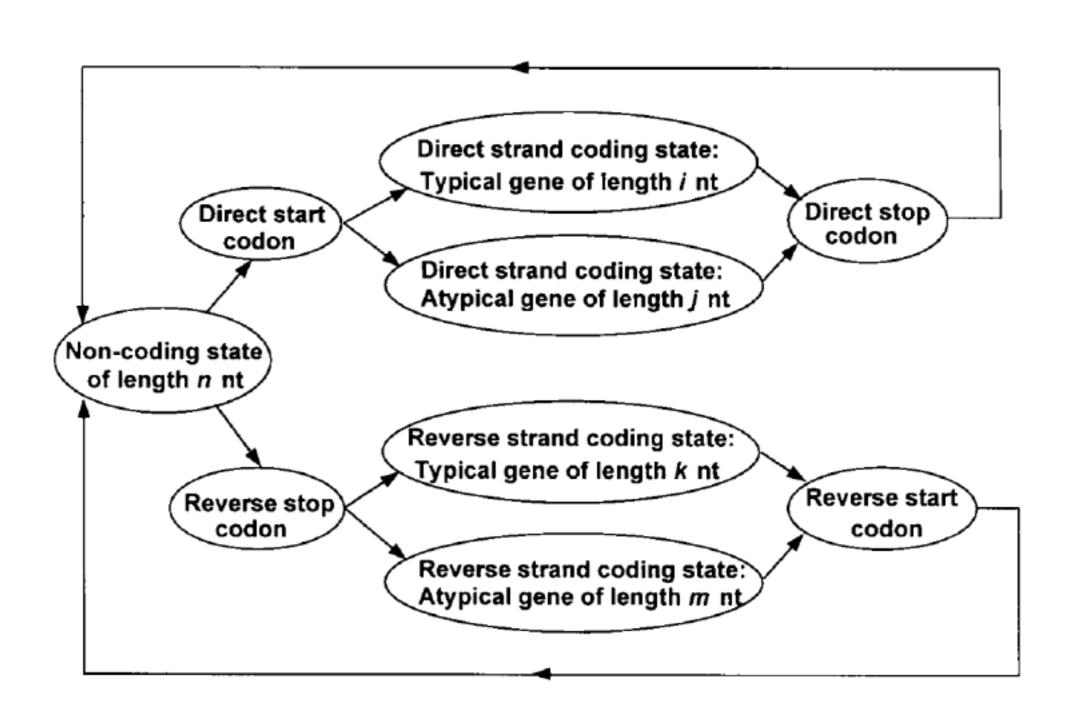
Codon usages can be different in the typical coding regions and the atypical coding regions.

Gene finding: frames

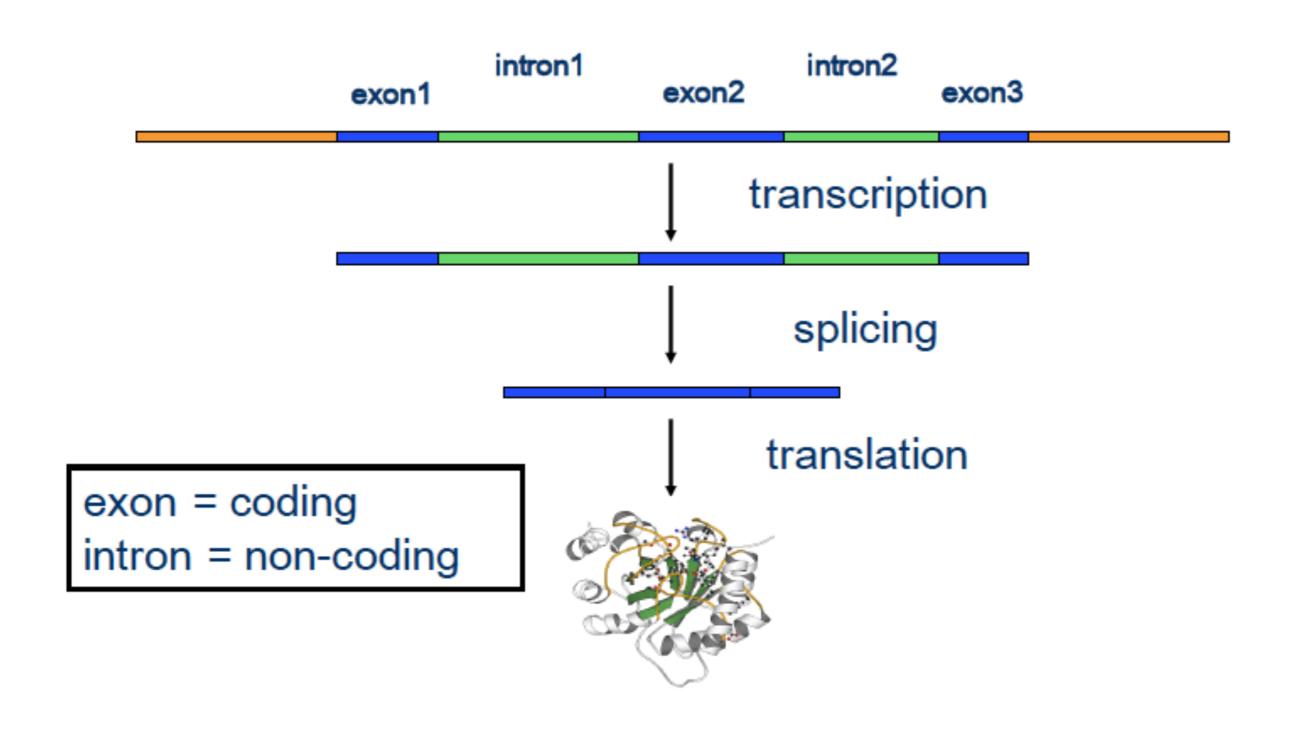


Gene finding: HMM for bacteria

GeneMarker's HMM model

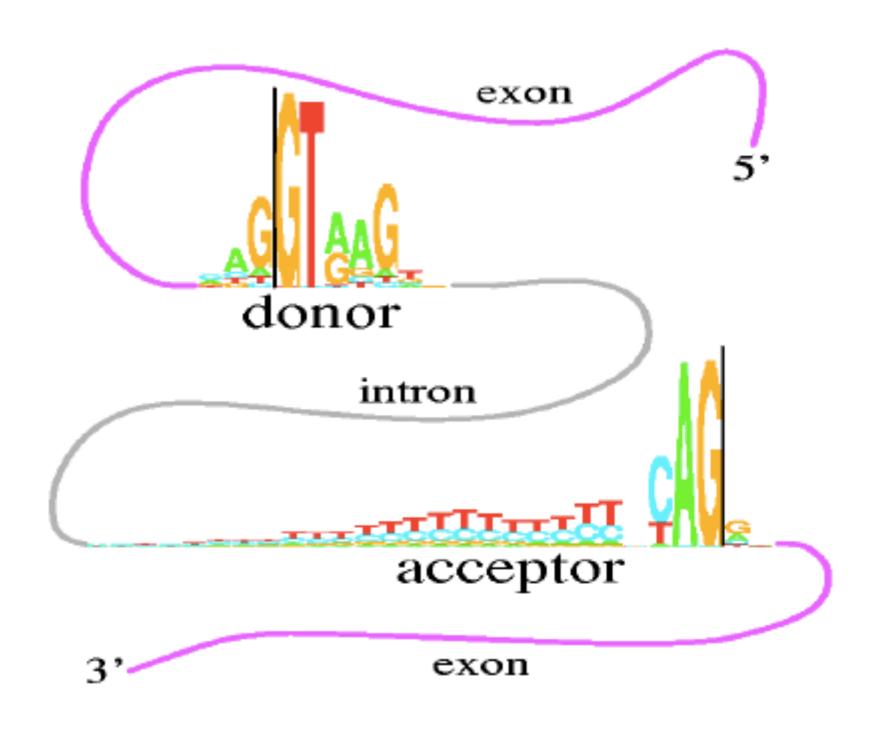


Gene finding: handling introns



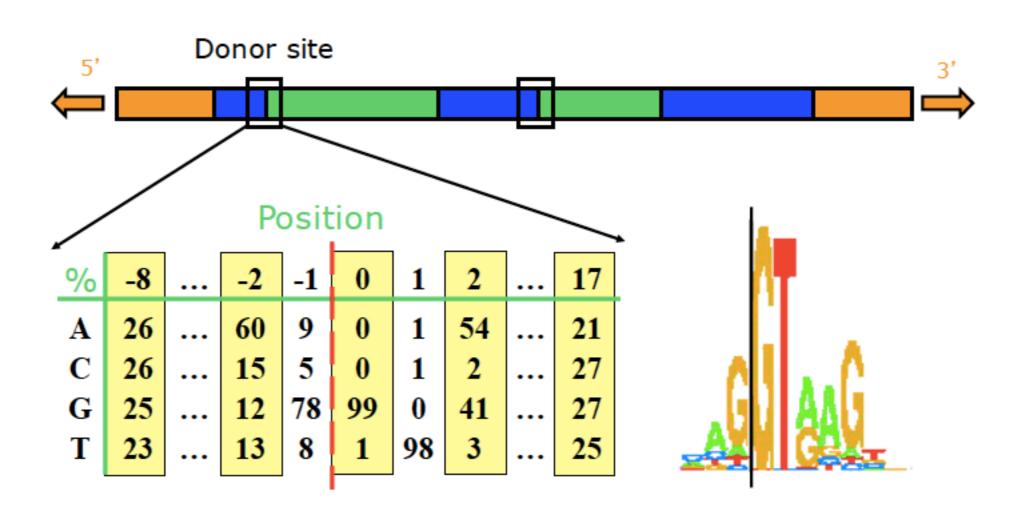
Gene finding: handling introns

Splicing site motifs



Gene finding: handling introns

Splicing site motifs



Gene finding: HMM version 2

