
Lecture 8

Outline

HMAC Collision
Resistance

HMAC

• Hash MAC

• Apply a hash function H to your original message

• What properties should H satisfy?

Collision-resistance

Let H: M →T be a hash function (|M| >> |T|)

A collision for H is a pair m0 , m1 M such that:
H(m0) = H(m1) and m0 m1

A function H is collision resistant if for all PPT algs. A:
AdvCR[A,H] = Pr[A outputs collision for H] = negl

Example: SHA-256 (outputs 256 bits)

MAC from Collision-resistant Hash Functions

Let (S,V) be a MAC for short messages over (K,M,T) (e.g. AES)
Let H: Mbig→M

Def: (Sbig , Vbig) over (K, Mbig, T) as:

Sbig(k,m) = S(k,H(m)) ; Vbig(k,m,t) = V(k,H(m),t)

Thm: If I is a secure MAC and H is collision resistant
then Ibig is a secure MAC.

Example: S(k,m) = AES2-block-cbc(k, SHA-256(m)) is a secure MAC.

MAC from Collision-resistant Hash Functions

Collision resistance is necessary for security:

Suppose adversary can find m0 m1 s.t. H(m0) = H(m1).

Then: Sbig is insecure under a 1-chosen msg attack

step 1: adversary asks for t ⟵S(k, m0)
step 2: output (m1 , t) as forgery

Sbig(k, m) = S(k, H(m)) ; Vbig(k, m, t) = V(k, H(m), t)

Protecting File Integrity

F1 F2 Fn⋯
package name

read-only
public space

H(F1) H(F2)

H(Fn)

Software packages:

package name package name

The birthday attack

Let H: M → {0,1}n be a hash function (|M| >> 2n)

Generic alg. to find a collision in time O(2n/2) hashes

The birthday attack

Let H: M → {0,1}n be a hash function (|M| >> 2n)

Generic alg. to find a collision in time O(2n/2) hashes

Algorithm:
1. Choose 2n/2 random messages in M: m1, …, m2n/2 (distinct w.h.p)

2. For i = 1, …, 2n/2 compute ti = H(mi) ∈{0,1}n

3. Look for a collision (ti = tj). If not found, got back to step 1.

How well will this work?

The birthday attack

Let r1, …, rn ∈ {1,…,B} be indep. identically distributed integers.

Thm: when n = 1.2 × B1/2 then Pr [∃i≠j: ri = rj] ≥ ½

Proof: (for uniform indep. r1, …, rn)

The birthday attack

H: M → {0,1}n . Collision finding algorithm:
1. Choose 2n/2 random elements in M: m1, …, m2n/2

2. For i = 1, …, 2n/2 compute ti = H(mi) ∈{0,1}n

3. Look for a collision (ti = tj). If not found, got back to step 1.

Expected number of iteration ≈ 2 (by previous Thm)

Running time: O(2n/2) (space O(2n/2))

Example: SHA1 has output size 160 bits. Birthday attack: 280. Best attack: 251

Merkle-Damgard

Given h: T × X ⟶ T (compression function)

we obtain H: X≤L⟶ T

Hi - chaining variables

PB: padding block

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)
H(m)

H0 H1 H2 H3 H4

-- If no space for PB add another block

Merkle-Damgard

Theorem: If h is collision resistant, then so is H.
Proof: collision on H ⇒ collision on h

Suppose H(M) = H(M’). We build collision for h.

IV = H0 , H1 , … , Ht , Ht+1 = H(M)

IV = H0’ , H1’ , … , H’r , H’r+1 = H(M’)

h(Ht, Mt ll PB) = Ht+1 = H’r+1 = h(H’r , M’r ll PB’)

Merkle-Damgard

Theorem: If h is collision resistant, then so is H.
Proof: collision on H ⇒ collision on h

Suppose H(M) = H(M’). We build collision for h.

IV = H0 , H1 , … , Ht , Ht+1 = H(M)

IV = H0’ , H1’ , … , H’r , H’r+1 = H(M’)

h(Ht, Mt ll PB) = Ht+1 = H’r+1 = h(H’r , M’r ll PB’)

Otherwise suppose Ht = H’r and Mt = M’r and PB = PB’

Then: h(Ht-1, Mt-1) = Ht = H’t = h(H’t-1, M’t-1)

Merkle-Damgard

Thm: h collision resistant ⇒ H collision resistant

Goal: construct compression function h: T × X ⟶ T

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)
H(m)

Standardized Method: HMAC

Most widely used MAC on the Internet.

H: hash function.
example: SHA-256 ; output is 256 bits

Can we build a MAC directly out of a hash function?

HMAC: S(k, m) = H(kopad ll H(kipad ll m))

The HMAC Construction

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>IV
(fixed)

h
>

k⨁opad

HMAC: Features

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF
• Can be proven under certain PRF assumptions about h(.,.)
• Can even be truncated, to say the first 80 bits of output

This is used in TLS

Summary

• Message Authentication Codes (MACs)

• Hash Functions

• HMAC

