

Outline

(Maria)

Collision Resistance

(Encrypted CBC-MAC)

HMAC

- · Hash MAC : Same security as a MAC
- Apply a hash function H to your original message

In a secure MAC, given (m, tag,), (mz, tagz)..... (mn, tagn)
ollision-resistance hard to fird (m, tag) that Collision-resistance passes verification. If given H,
lasy to fird m, m₂
S.t. H(m) = H(m₂) Let H: M \rightarrow T be a hash function $(|M| \gg |T|)$ A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: $H(m_0) = H(m_1)$ and $m_0 \neq m_1$ then F(K,H(m))A function H is **collision resistant** if for all PPT algs. A: = f(x, H(m2)) $Adv_{CR}[A,H] = Pr[A \text{ outputs collision for } H] = negl$ => tag (m,) = tag (m2) Example: SHA-256 (outputs 256 bits)

MAC from Collision-resistant Hash Functions

```
Let (S,V) be a MAC for short messages over (K,M,T) (e.g. AES) 

Let H: M^{big} \rightarrow M 

Def: (S<sup>big</sup>, V<sup>big</sup>) over (K, M<sup>big</sup>, T) as: 

S^{big}(k,m) = S(k,H(m)) ; V^{big}(k,m,t) = V(k,H(m),t)
```

<u>Thm</u>: If I is a secure MAC and H is collision resistant then I^{big} is a secure MAC.

Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is a secure MAC.

MAC from Collision-resistant Hash Functions

$$S^{big}(k, m) = S(k, H(m))$$
; $V^{big}(k, m, t) = V(k, H(m), t)$

Collision resistance is necessary for security:

```
Suppose adversary can find m_0 \neq m_1 s.t. H(m_0) = H(m_1).
```

Then: S^{big} is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow S(k, m_0)$

step 2: output (m₁, t) as forgery

Protecting File Integrity

$$H(\underline{m}) \rightarrow y$$

Software packages:

package name F_1

package name

•••

F_n

$$|m| = 2 \text{ bits}$$
 $2^2 - 4$
 $| | = | \text{ bit}$ 2

The birthday attack

Let H: $M \rightarrow \{0,1\}^n$ be a hash function $(|M| >> \underline{2^n})$

Generic alg. to find a collision in time $O(2^{n/2})$

$$B = \text{output space} = 2^n$$

After hashiy (1.2 JB ~ $2^{n/2}$) values,
Pr that you saw a collision is ≈ 0.5

The birthday attack

Let H: M \rightarrow {0,1}ⁿ be a hash function (|M| >> 2ⁿ)

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: $m_1, ..., m_2^{n/2}$ (distinct w.h.p)
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

How well will this work?

n = 32 bdays that we collected

Let $r_1, ..., r_n \in \{1,...,B\}$ be indep. identically distributed integers.

Thm: when $\mathbf{n} = 1.2 \times \mathbf{B}^{1/2}$ then $\Pr[\exists i \neq j: r_i = r_i] \geq \frac{1}{2}$

Proof: (for <u>uniform</u> indep. r_1 , ..., r_n)

$$Pr[\exists i,j \text{ st. } r_i = r_j] = 1 - Pr[\forall i \neq j, r_i \neq r_j]$$

$$= (-(B-1)) \cdot (B-2) \cdot (B-3) \dots$$

$$= (-\frac{(B-1)}{B}, \frac{(B-2)}{B}, \frac{(B-3)}{B}...$$

$$\geq 1 - e^{-n^{2}/2B}$$

$$= \frac{B-(n-1)}{B} \cdot \frac{B-($$

The birthday attack

H: $M \rightarrow \{0,1\}^n$. Collision finding algorithm:

- 1. Choose $2^{n/2}$ random elements in M: $m_1, ..., m_2^{n/2}$
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

Expected number of iteration ≈ 2 (by previous Thm)

Running time:
$$O(2^{n/2})$$
 (space $O(2^{n/2})$)
SHA - 256 256

Example: SHA1 has output size 160 bits. Birthday attack: 280. Best attack: 251

Given $h: T \times X \longrightarrow T$ (compression function)

we obtain $H: X^{\leq L} \longrightarrow T$

H_i - chaining variables

PB: padding block

-- If no space for PB add another block

Theorem: If h is collision resistant, then so is H.

Proof: collision on $H \Rightarrow$ collision on h

Suppose H(M) = H(M'). We build collision for h.

$$h(H_t, M_t \parallel PB) = H_{t+1} = H'_{t+1} = h(H'_t, M'_t \parallel PB')$$

 $IV = H_0, H_1, ..., H_t, H_{t+1} = H(M)$ $IV = H_0', H_1', ..., H'_r, H'_{r+1} = H(M')$

Theorem: If h is collision resistant, then so is H.

Proof: collision on $H \Rightarrow$ collision on h

Suppose H(M) = H(M'). We build collision for h.

$$IV = H_0, H_1, ..., H_t, H_{t+1} = H(M)$$
 $IV = H_0', H_1', ..., H'_r, H'_{r+1} = H(M')$

$$h(H_t, M_t \parallel PB) = H_{t+1} = H'_{r+1} = h(H'_r, M'_r \parallel PB')$$

Otherwise suppose $H_t = H'_r$ and $M_t = M'_r$ and PB = PB'

Then: $h(H_{t-1}, M_{t-1}) = H_t = H'_t = h(H'_{t-1}, M'_{t-1})$

Thm: h collision resistant \Rightarrow H collision resistant

Goal: construct compression function $h: T \times X \longrightarrow T$

Standardized Method: HMAC

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256; output is 256 bits

Can we build a MAC directly out of a hash function?

HMAC:
$$S(k, m) = H(k \oplus \text{opad } || H(k \oplus \text{ipad } || m))$$

CBC-MAC. The HMAC Construction

HMAC: Features

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

- Can be proven under certain PRF assumptions about h(.,.)
- Can even be truncated, to say the first 80 bits of output

This is used in TLS

find findlest of mallest of m s.t.) H(m)=y

Summary

Message Authentication Codes (MACs)

Hash Functions

• HMAC