

Outline

Block Ciphers, PRF, PRP

Modes of Operation for Block Ciphers

Administrative Details

Scribe volunteer
 Megher

Block Ciphers

Block Ciphers

Examples:

- 1. DES: n = 64 bits, k = 56 bits \checkmark Depracated
- 2. 3DES: n = 64 bits, k = 168 bits
- 3. AES: n=128 bits, k=128, 192, 256 bits

Examples:

- 1. DES: k = 56 bits, j = 16, each $k_i = 48$ bits
- 2. 3DES: k = 168 bits, j = 16, each $k_i = 48$ bits
- 3. AES: k = 128/192/256 bits, j = 10, each $k_i = 128$ bits

Defining Security for Block Ciphers

- A pseudorandom function (PRF) is a function from $(\mathcal{K} \times \mathcal{M} \to C)$ s.t. F (k, m) is efficiently computable for every k and m
 - key msg
- A **pseudorandom permutation (PRP)** is a function from $(\mathcal{K} \times \underline{\mathcal{X}} \to \underline{\mathcal{X}})$ s.t. F (k, m) is efficiently computable for every k and m, and
 - F (k, .) has domain = image and is one-to-one, and
 - F-1 (k, y) is efficiently computable for every k and y

where
$$F^{-1}(k, F(k, x)) = x$$

AES, DES are PRPs. In AES, $|X| = 2^{128}$ and in DES, $|X| = 2^{64}$. Permutation: $\{1,2,3...N\} \rightarrow \{1,2...N\}$. $\{1,2,3...N\} \rightarrow \{1,2...N\}$. $\{1,2,3...N\} \rightarrow \{1,2...N\}$

Defining Security for Block Ciphers

PRF : {0,13 -> {0,13 h • A **pseudorandom function (PRF)** is a function from $\mathcal{K} \times \mathcal{M} \rightarrow C$ s.t. F (k, m) is efficiently computable for every k and m and is indistinguishable from a "random" function for a "random" choice of key Game

Can we build a PRF from a PRG?

AES (k, m)

(Link to proof on webpage for tree construction)

H.W. Prove that Fis a secure PRF.

 $F(k, x \in \{0,1\}) = G(k)[x]$

Define 1-bit PRF F: $K \times \{0,1\} \longrightarrow K$ as

Let $G: \slashed{\psi} \longrightarrow \slashed{\wp}$ be a secure PRG

30,13° -> 30,1327

F(K, 0) = first half of the bits of G(K)

F(K,1) z second half of the bits of G(K)

Question 1

Let $F: K \times X \rightarrow X$ be a secure PRP.

Is F a secure PRF?

- 1. Always
- 2. Never
- 3. Depends on F

Question 2

Let $F: K \times X \rightarrow \{0,1\}^{128}$ be a secure PRF.

Is the following F' a secure PRF?

$$F'(k, x) = \begin{cases} 1^{128} & \text{if } x=0 \\ F(k,x) & \text{otherwise} \end{cases}$$

- 1. Yes
- 2. No
- 3. Depends on F

Question 3

Let $F: K \times X \rightarrow \{0,1\}^{128}$ be a secure PRF.

Can you build a PRG G: $K \rightarrow \{0,1\}^{4096}$ from F?

DES

Examples:

- 1. DES: k = 56 bits, j = 16, each $k_i = 48$ bits
- 2. 3DES: k = 168 bits, j = 16, each $k_i = 48$ bits
- 3. AES: k = 128/192/256 bits, j = 10, each $k_i = 128$ bits

Each function f_i is:

Inversion.

Each round Rd_i: Feistel Network

Given functions f_1 , ..., $f_j : \{0,1\}^n \longrightarrow \{0,1\}^n$

Build an invertible function $F: \{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$

Requirements on S-boxes

- Implemented as lookup tables
- Must not be linear functions
- Note that all other functions are linear. If S-boxes are linear, it means that DES encryption can be represented as a matrix

Modes of Operation for Block Ciphers

or, How to use Block Ciphers

One-time Key

128-bit
$$K \times M \rightarrow M$$
.

- Goal: build "secure" encryption from a secure PRP (e.g. AES)
- Recall: what is semantic (or CPA/chosen plaintext attack) security

• ECB mode (electronic code book): **E** (k, m) = PRP(K, m)

Incorrect Use of Block Ciphers

Electronic Code Book (ECB) should not be applied to multiple blocks

Problem:

- if $m_1=m_2$ then $c_1=c_2$
- not semantically secure for messages that contain two blocks

One-time key, but many blocks

Deterministic counter mode from a PRF F: \mathcal{K} x $\{0,1\}^n$ ---> $\{0,1\}^n$ (n = 128)

⇒ Stream cipher built from a PRF (e.g. AES, 3DES)

One-time Keys

<u>Theorem</u>: For any L>0,

If F is a secure PRF over $(\mathcal{K}, \mathcal{X}, \mathcal{X})$ then

 $\mathsf{E}_{\mathsf{DETCTR}}$ is semantically secure cipher over $(\mathcal{K}, \mathcal{X}^{\mathit{L}}, \mathcal{X}^{\mathit{L}})$

example: encrypted email, new key for every message.

Many-time Keys

Example applications:

- 1. File systems: Same AES key used to encrypt many files.
- 2. Ipsec (used in VPN): Same AES key used to encrypt many packets.

Defining Security:

Defining Security:

Recall: One-time Security $\{E(k,m_0)\}$ $\{E(k,m_0$

Many-time Keys

If secret key is to be used multiple times \implies given the same plaintext message twice, encryption must produce different outputs.

Solutions?

Determisaistic function (K, m) won't work!

* randomize

* nonce

* counter * chaining

Many-time Keys : Solution 1 - PRF

Let $F: K \times R \longrightarrow M$ be a secure PRF.

For m \in M define $E(k,m) = [r \leftarrow R, \text{ output } (r, F(k,r) \oplus m)]$

Is E semantically secure under CPA?

Solution 2: nonce-based Encryption

- nonce n: a value that changes from msg to msg. (k,n) pair never used more than once
- method 1: nonce is a counter (e.g. packet counter)
 - used when encryptor keeps state from msg to msg
 - if decryptor has same state, need not send nonce with CT
- method 2: nonce is random

[File Encryption]

[SSL, IPSec]

CBC (Cipher Block Chaining) mode

Let (E,D) be a PRP. $E_{CBC}(k,m)$: choose <u>random</u> Initialization Vector and do:

Decryption Circuit

In symbols: $c[0] = E(k, IV \oplus m[0]) \Rightarrow m[0] = D(k, c[0]) \oplus IV$

CPA Security of CBC

• <u>CBC Theorem</u>: For small enough L>0, If E is a secure PRP over (K,X) then E_{CBC} is CPA-secure over (K, X^L, X^{L+1}).

- In particular, security error in CBC = $(2 \times \text{sec. error in PRP}) + (q^2L^2/|X|)$
- What if IV was predictable? Is it still CPA-secure?

Bug in SSL/TLS 1.0: IV for record #i is last CT block of record #(i-1)

What happens if adversary can predict IV

CBC (Cipher Block Chaining) mode: Version 2

• Cipher block chaining with <u>unique</u> nonce: $key = (k,k_1)$ unique nonce means: (key, n) pair is used for only one message

ciphertext

Rand-ctr mode

Let F: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ be a secure *PRF*.

E(k,m): choose a random $IV \in \{0,1\}^n$ and do:

(1) Can use PRF instead of PRP and (2) is parallelizable.

Summary

Modes of operation of block-ciphers