

Introduction

Block Ciphers: PRFs, PRPs

Administrative Details

• Scribe volunteer

Dzgur

Pseudorandom Generators

PRGs are "parameterized" by security parameter λ which represents key length

• PRG becomes "more secure" as λ increases

$$P_{t}[success] = \frac{1}{2}$$

input

Seed lengths and output lengths grow with λ

For every $\lambda=1,2,3,...$ there is a different PRG G_{λ} :

$$\underbrace{G_{\lambda}: K_{\lambda} \to \{0,1\}^{n(\lambda)}}_{\text{(in the lectures we will often omit }\lambda)} \qquad n \text{ is a fixed polynomial,}$$

$$n = 3\lambda$$

$$n > \lambda$$

A PRG = & G, 3 rem is secure iff

for every pory-sized aaverage (1),
there exists a function
$$\varepsilon = \varepsilon(\lambda)$$
 s.t.

for every poly-sized adversary (PPT) &,

 $0 \left| \Pr\left(A \left(G_{\lambda}(k) \right) = 1 \right) - \Pr\left(A \left(r \right) = 1 \right) \right| \leq \varepsilon(\lambda)$ $| K = K | \left(G_{\lambda}(k) \right) = 1 | \left(G_{\lambda}(k) \right$

② ε should be a negligible function. $\left(\frac{7\lambda, s.t. \forall \lambda \geq \lambda_0}{\varepsilon(\lambda)} < \frac{1}{\lambda^c}\right)$

Rigorous Definitions

Let P_1 and P_2 be two distributions over $\{0,1\}^n$

for fixed k, Enc (k, mo) # Enc(k, m,)

Of cannot decrypt!

Def: a cipher is **semantically secure** if

for all
$$m_0$$
, $m_1 \in M$:
$$\{E(k,m_0)\} \approx_c \{E(k,m_1)\}_{k \in K}$$

THM.

PRG-based stream cipher is semantically secure.

i.e. for all m_0 , $m_1 \in M$: {Enc(k,m)} \approx_c {Enc(k,m)}

Chairs: $(G(k) \oplus m_1)$

Claim:

G(K) Dm,

by PRG

Sample
$$r \neq \{0,1\}$$
 $\{\{2,1\}\}$ $\{\{3,1\}\}$ $\{3,1\}$ $\{4,1\}$ $\{4,1\}$ uniform dist. over $\{4,1\}$ uniform dist. over $\{4,1\}$ uniform dist. over $\{4,1\}$

PRG-based stream cipher is semantically secure. $\operatorname{Pec}(k,m) = m \oplus G(k)$

i.e. for all m_0 , $m_1 \in M$: {Enc(k,m)} \approx_c { Enc(k,m)}

[0,1] Zr D mo}

[10,1] Zr D mo}

[10,1] Zr (d(G(k) Dm)=1) - Pr[d(r D m)=1)]

[10,1] Zr (d(G(k) Dm)=1) - Pr[d(G(k) Dm)=1)]

[10,1] Zr (d(G(k) Dm)=1)

THM. Enc $(k,m) = m \oplus G(k)$ PRG-based stream cipher is semantically secure. Dec $(k,c) = c \oplus G(k)$

i.e. for all m_0 , $m_1 \in M$: { $Erc(k,m_0)$ } \approx_c { Erc(k,m)}

Claim: \mathcal{A} , $G(K) \oplus m_0$ Sample $r \neq \{0,1\}$ $\leq r \oplus m_0\}$ Sample $r \neq \{0,1\}$ $\leq r \oplus m_0\}$ Unif. distribution over $\{0,1\}$ $\Rightarrow Contradiction$

, × & & 2

Attack: Integrity

In the PRG-based cipher,

easy to convert $E(k,m) \rightarrow E(k,m+1)$

easy to convert
$$E(k,m) \rightarrow E(k,m+1)$$

$$C_{k+1} = C_{k+1}$$

Example: RC4 Cipher (deprecated)

- Expand 128-bit seed to 2048 bits of pseudorandomness
- Use pseudorandomness to initialize internal state
- Used in HTTPS, WEP
- Weaknesses:
 - 1. Not pseudorandom: e.g. [0,0] appears more often than it should
 - 2. Related key attacks make it possible to recover the key

https://blog.cryptographyengineering.com/2013/03/12/attack-of-week-rc4-is-kind-of-broken-in/