lecture 23
(AMA)

Prove: Non-interactive zero-knowledge is impossible in for $N P$
HW: Prove "deterministic" ZK for NP is imp. in the

Prover $x \in L$

Verifier

Suppose NIZK exists in the plain model.
\Rightarrow Imp simulator Sim s.t.
$\operatorname{Sim}(x) \rightarrow \pi$ which is indistinguishable from $P(x, \omega) \rightarrow \pi^{\prime}$.
\Rightarrow Consider p^{*} given $x \in L$ rurs $\operatorname{Sin}(x) \rightarrow \pi \quad$ s.t. $\operatorname{Ver}(\pi)=1$

Hard problems in NP. where $x \in L \approx_{c} x \notin L$.
\Rightarrow Consider P^{x} given $x^{\prime} \notin L$. runs $\operatorname{Sim}\left(x^{\prime}\right) \rightarrow \pi$.
st. $\operatorname{Ver}(\pi)=1$.
\Rightarrow This contradicts soundness.

NI Zero-knowledge for $N P$ in the RO model Graph 3-col is NP-hard \Rightarrow Any x of an NP lang L can be Kari; Prover

$$
\text { karl } x, w, L
$$

is 300

$$
c=\text { com(colors) }
$$

$$
\left.c=\operatorname{com}(\operatorname{color} s), H(c)-(i, j), \text { color }_{i}, \operatorname{color} r_{j}\right)
$$

$R \longrightarrow G$
$G \longrightarrow B$
$B \longrightarrow R$

$$
\frac{1}{2^{n \lg n}} \quad H:\{0,1\}^{n^{2}} \rightarrow\{0,1\}^{n \log n}
$$

$$
\begin{aligned}
& H(c) \rightarrow(i, j) \\
& H:\{0,1\}^{n^{2}} \rightarrow\{0,1\}^{\lg n} \\
& \\
& \frac{1}{2^{\log n}} \sim \frac{1}{n}
\end{aligned}
$$

$c=\operatorname{com}(V ; r)$

$$
\text { p.t. }\left[\begin{array}{cccc}
c & \text { is } & \text { a commotment to } \\
V & \text { s.t. } & 0 \leq v \leq 10
\end{array}\right]
$$

NP instanue $X:=C$

$$
T=\left\{c^{\prime} \text { s.t. } \exists(v, r) \text { s.t. } c^{\prime}=\operatorname{com}(v ; r)\right.
$$ where $0 \leq v \leq 10\}$

$\sim P \overleftarrow{\log g}$.

$$
x \in L .
$$

L is an NP langrage. Why?
D of (1) $\forall x \in L, \mathcal{F}_{1} \omega$ s.t. $\quad R_{L}(x, \omega)=1$
poly. time computable.
long' 2
(2) $\forall x \notin L, \forall \omega, \quad R_{L}(x, \omega)=0$.

$$
R=(x=c, w=(v, r))
$$

if $c=\operatorname{com}(V ; r)$ and $0 \leq V \leq 10,0 / p I$ else opp 0 .

view,
\approx contains computationally alost the witness
Exp_{2}

