
Lecture 12

Outline

Schnorr Signatures Commitments

PKE can be used to establish a shared secret

Alice Bob

(pk, sk)

“Alice”, pk
choose random

x ∈ {0,1}128

How to Build
Public Key Encryption

Recall: The Diffie-Hellman protocol

choose a {1,…,p-1}

Fix a finite cyclic group G (e.g G = (Zp)*) of order n
Fix a generator g in G (i.e. G = {1, g, g2, g3, … , gn-1 })

choose b {1,…,p-1}

Convert to PKE?

choose a {1,…,p-1}

El-Gamal Encryption
El-Gamal is a public-key encryption system (Gen, Enc, Dec):
• Key generation Gen:

• Enc:

• Dec:

El-Gamal Encryption

Why is this secure?

Recall: Semantic security

Computational Diffie-Hellman Assumption

G: finite cyclic group of order n

Comp. DH (CDH) assumption holds in G if: g, ga , gb ⇏ gab

for all efficient algs. A:

Pr[A(g, ga, gb) = gab] < negligible

where g ⟵ {generators of G} , a, b ⟵ Zn

Hash Diffie-Hellman Assumption

G: finite cyclic group of order n , H: G2⟶ K a hash function

Def: Hash-DH (HDH) assumption holds for (G, H) if:

(g, ga, gb , H(gb,gab)) ≈p (g, ga, gb , R)

where g ⟵ {generators of G} , a, b ⟵ Zn , R ⟵ K

H acts as an extractor: strange distribution on G2 ⇒ uniform on K

HDH => El-Gamal is Semantically Secure

chal. adv. A

pk,sk
m0 , m1

gb, Es(H(), m0)

b’

pk = (g,ga)

chal. adv. A

pk,sk
m0 , m1

gb, Es(H(), m1)

b’

pk = (g,ga)

(gb , gab)

(gb , gab)

≈c

HDH => El-Gamal is Semantically Secure

≈c

chal. adv. A

pk,sk
m0 , m1

gb, Es(H(), m0)

b’

pk = (g,ga) chal. adv. A

pk,sk
m0 , m1

gb, Es(k, m0)

b’

pk = (g,ga)

kK

(gb , gab)

HDH => El-Gamal is Semantically Secure

≈c

≈c

chal. adv. A

pk,sk
m0 , m1

gb, Es(H(), m0)

b’

pk = (g,ga) chal. adv. A

pk,sk
m0 , m1

gb, Es(k, m0)

b’

pk = (g,ga)

kK

chal. adv. A

pk,sk
m0 , m1

gb, Es(k, m1)

b’

pk = (g,ga)

kK

(gb , gab)

HDH => El-Gamal is Semantically Secure

≈c

≈c

≈c

chal. adv. A

pk,sk
m0 , m1

gb, Es(H(), m0)

b’

pk = (g,ga)

chal. adv. A

pk,sk
m0 , m1

gb, Es(H(), m1)

b’

pk = (g,ga)

chal. adv. A

pk,sk
m0 , m1

gb, Es(k, m0)

b’

pk = (g,ga)

kK

chal. adv. A

pk,sk
m0 , m1

gb, Es(k, m1)

b’

pk = (g,ga)

kK

(gb , gab)

(gb , gab)

The RSA
Cryptosystem

Review: arithmetic mod composites

Let N = pq where p,q are prime

ZN = {0,1,2,…,N-1} ; (ZN)* = {invertible elements in ZN}

Facts: x  ZN is invertible  gcd(x,N) = 1

• Number of elements in (ZN)* is (N) = (p-1)(q-1) = N-p-q+1

Euler’s thm:  x (ZN)* : x(N) = 1

Textbook RSA System

Gen(.): choose random primes p,q 1024 bits. Set N=pq.

choose integers e , d s.t. e⋅d = 1 (mod (N))

output pk = (N, e) , sk = (N, d)

yd = xed = xk(N)+1
= (x(N))k

 x = (1)k
 x = x

RSA-Enc (pk, x) = xe (in ZN)

RSA-Dec (pk, y) = yd (in ZN)

Textbook RSA System

Let’s analyze this:

yd = xed = xk(N)+1
= (x(N))k

 x = (1)k
 x = x

RSA-Enc (pk, x) = xe (in ZN)

RSA-Dec (pk, y) = yd (in ZN)

Insecure cryptosystem !!

Is not semantically secure and many attacks exist

So what is this?

Trapdoor Permutation

Trapdoor Permutation

Three algorithms: (G, F, F-1)

• G: outputs pk, sk. pk defines a function F(pk, ): X → X

• F(pk, x): evaluates the function at x

• F-1(sk, y): inverts the function at y using sk

Secure trapdoor permutation:
The function F (pk, ) is one-way without the trapdoor sk

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

Pr[A(N,e,y) = y1/e] < negligible

where p,q n-bit primes, Npq, yZN
*R R

Hardness of the RSA assumption

Consider the set of integers: (e.g. for n=1024)

Problem: Factor a random element in the set (e.g. for n=1024) HARD!

Recall RSA assumpn: Given pk = (e, N) and y, find yd where d = e-1 (mod (N))

If you could factor N → find (p, q) → compute (N) = (p-1)(q-1) = N-p-q+1

→ compute d = e-1 (mod (N))→ break RSA

{ N = p⋅q where (p,q) are n-bit primes }

Textbook RSA System

RSA-Enc (pk, x) = xe (in ZN)

RSA-Dec (pk, y) = yd (in ZN)

Is not semantically secure

Gen(.): pk = (N, e), sk = (N, d) such that e⋅d = 1 (mod (N))

How would you make it semantically secure?

Speeding up RSA

To speed up RSA use a small e: c = me (mod N)

• Minimum value: e=3 (gcd(e, (N)) = 1)

• Recommended value: e=65537=216+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.
• ElGamal (next module): approx. same time for both.

RSA in practice: PKCS1 v1.5
PKCS1 mode 2: (encryption)

• Resulting value is RSA encrypted

• Widely deployed, e.g. in HTTPS

• Suffered from a CCA attack

02 random pad FF msg

RSA modulus size (e.g. 2048 bits)

16 bits

CCA Attack on PKCS1 v1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 attacker can test if 16 MSBs of plaintext = ’02’

Chosen-ciphertext attack: to decrypt a given ciphertext c do:

• Choose r  ZN. Compute c’ ⟵ rec = (r  PKCS1(m))e

• Send c’ to web server and use response

AttackerWeb
Server

d

ciphertextc=
c

yes: continue
no: error

Is this
PKCS1?

02

Baby Bleichenbacher

Suppose N is N = 2n (an invalid RSA modulus). Then:

• Sending c reveals msb(x)
• Sending 2e⋅c = (2x)e in ZN reveals msb(2x mod N) = msb2(x)
• Sending 4e⋅c = (4x)e in ZN reveals msb(4x mod N) = msb3(x)
• … and so on to reveal all of x

AttackerWeb
Server

d

ciphertextc=
c

yes: continue
no: error

is msb=1?

1

compute x⟵cd in ZN

The factoring problem

Gauss (1805):

Best known alg. (NFS): run time exp() for n-bit integer

Current world record: RSA-768 (232 digits)
• Work: two years on hundreds of machines
• Factoring a 1024-bit integer: about 1000 times harder

⇒ likely possible this decade

“The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most
important and useful in arithmetic.”

Summary

• Key concepts in number theory

• Hardness of discrete logarithm, factoring

• Diffie-Hellman key exchange from hardness of DDH

• Public key encryption => shared key derivation (called key exchange)

