Lecture 13

Scribe: Mircea
Outline

PKE can be used to establish a shared secret

Alice

(pk, sk)

Bob
m
choose random $x \in\{0,1\}^{128}$

$$
c t=E_{n c} p_{k}(m ; x)
$$

$\operatorname{Dec}_{g_{k}}(c t) \rightarrow m$

How to Build Public Key Encryption

Recall: The Diffie-Hellman protocol
Fix a finite cyclic group G (e.g $\left.G=\left(Z_{p}\right)^{*}\right)$ of order n Fix a generator g in G (ie. $G=\left\{1, g, g^{2}, g^{3}, \ldots, g^{n-1}\right\}$)

$$
g^{a b}=B^{a}
$$

Computational DH: Given $\left(g^{a}, g^{b}\right)$, hard to find $g^{a b}$

Convert to PKE?

$$
\begin{aligned}
&\left(g^{a}, g^{b}, g^{a b}\right) \approx\left(g^{a} \cdot g^{b}, g^{c}\right) \\
& a, b, c=\{1, \ldots p-1\}
\end{aligned}
$$

choose $a \leftarrow\{1, \ldots, p-1\}$ \qquad g^{a} : Alice's public key

$$
g^{b}, H\left(g^{a b}\right) \oplus m \quad m
$$

ASSUMPTION: $\quad\left(g^{a}, g^{b}, H\left(g^{a b}\right)\right) \approx\left(g^{a}, g^{b}\right.$, uniform $)$

El-Gamal Encryption
El-Gamal is a public-key encryption system (Gen, Enc, Dec):

- Key generation Gen:

$$
p k=g^{a}, \quad s k=a
$$

$$
a \leftarrow\{1, \ldots p-1\}
$$

$$
\begin{aligned}
& \text { - Enc }\left(p_{a}, m\right)=\text { Sample } b \\
& \text { Output } c t=\left(g^{b}, H\left(g^{a b}\right) \oplus m\right) \text {. } \\
& \text { - } \operatorname{Dec}(s k, c t) \overbrace{a}^{c} \rightarrow \overbrace{\left(g^{b},\right.}^{c_{1}},{ }_{H}^{c_{2}}\left(g^{a b}\right) \oplus m) \rightarrow \begin{array}{l}
\text { Compute } g^{a b}=\left(g^{b}\right)^{a} . \\
H\left(g^{a b}\right) \oplus c_{2}=m
\end{array}
\end{aligned}
$$

El-Gamal Encryption

Why is this secure?
Recall: Semantic security (CPA - secure)

Computational Diffie-Hellman Assumption

G: finite cyclic group of order n
Comp. DH (CDH) assumption holds in G if: $\quad \mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}} \nRightarrow \mathrm{g}^{\mathrm{ab}}$
for all efficient algs. A:

$$
\operatorname{Pr}\left[A\left(g, g^{a}, g^{b}\right)=g^{a b}\right]<\text { negligible }
$$

where $\mathrm{g} \leftarrow$ \{generators of G$\}, \quad \mathrm{a}, \mathrm{b} \leftarrow \mathrm{Z}_{\mathrm{n}}$

Hash Diffie-Hellman Assumption

G: finite cyclic group of order n, $\mathrm{H}: \mathrm{G}^{2} \rightarrow \mathrm{~K}$ a hash function

Def: Hash-DH (HDH) assumption holds for (G, H) if:

$$
\left(g, g^{a}, g^{b}, H\left(g^{b}, g^{a b}\right)\right) \quad \approx_{p}\left(g, g^{a}, g^{b}, R\right)
$$

where $\mathrm{g} \longleftarrow\{$ generators of G$\}, \quad \mathrm{a}, \mathrm{b} \longleftarrow \mathrm{Z}_{\mathrm{n}}, \mathrm{R} \longleftarrow \mathrm{K}$

H acts as an extractor: strange distribution on $\mathrm{G}^{2} \Rightarrow$ uniform on K

HD $=>$ El-Gamal is Semantically Secure

 Goal.

HDH => El-Gamal is Semantically Secure

HDH => El-Gamal is Semantically Secure

HDH => El-Gamal is Semantically Secure

The RSA
Cryptosystem

Review: arithmetic mod composites

$$
|p|=|q|=2048 \text { bits }
$$

Let $N=p \cdot q$ where p, q are prime

$$
\left.\begin{array}{rl}
\quad Z_{N}=\{0,1,2, \ldots, N-1\} ;\left(Z_{N}\right)^{*}= & \left\{\text { invertible elements in } Z_{N}\right\} \\
& \{1,2,3 \ldots p-1, p+1, \ldots q-1, q+1 \ldots
\end{array}\right\}
$$

- Number of elements in $\left(Z_{N}\right)^{*}$ is $\varphi(N)=(p-1)(q-1)=N-p-q+1$

Euler's the: \square

$$
\forall x \in\left(Z_{N}\right)^{*}: \quad x^{\varphi(N)}=1 \quad \text { in } \mathbb{Z}
$$

Textbook RSA System

Gen(.): choose random primes $p, q \approx 1024$ bits. Set $\mathbf{N}=\mathbf{p q}$.
choose integers end s.t. e.d=1 $(\bmod \varphi(N)) \quad(r a n d o m)$
output $\mathrm{pk}=(\mathrm{N}, \mathrm{e}), \quad \mathrm{sk}=(\mathrm{N}, \mathrm{d})$

RSA-Enc (pk, x) $=x^{e}=y\left(\right.$ in $\left.Z_{N}\right)$

$$
x \in \mathbb{Z}_{N}
$$

RSA-Dec $\left(\begin{array}{c}\text { sk } \\ \text { 㐫 }\end{array}, y\right)=y^{d} \xrightarrow\left[(i m T]{ } z_{N}\right)$ should give x.

$$
y^{d}=x^{\text {ed }}=x^{k \phi(N)+1}=\left(x^{\phi(N)}\right)^{k} \cdot x=(1)^{k} \cdot x=x
$$

Textbook RSA System

Let's analyze this:

Insecure cryptosystem - لــ
Is not semantically secure and many attacks exist
So what is this?
Trapdoor Permutation

$$
\begin{aligned}
\varphi(N) & =(p-1)(q-1) \\
& =\text { \#elements in } \mathbb{Z}_{N}
\end{aligned}
$$

Trapdoor Permutation
$\forall e$, unique d sit.

$$
\begin{array}{r}
e d=1 \bmod \\
\varphi(N)
\end{array}
$$

Three algorithms: (G, F, F-1)

- G: outputs pk, sk. pk defines a function $F(p k, \cdot): X \rightarrow X$

- $F(p k, x)$: evaluates the function at x
- $F^{-1}(s k, y): x^{e} \longrightarrow X$ inverts the function at y using $s k$

Secure trapdoor permutation:
The function $\mathrm{F}(\mathrm{pk}, \cdot)$ is one-way without the trapdoor sk

Ch

Hard to find x.

The RSA assumption

RSA assumption: RSA is one-way permutation
For all efficient alga. A:

$$
\operatorname{Pr}\left[A(N, e, y)=y^{1 / e}\right]<\text { negligible }
$$

where $\quad \mathrm{p}, \mathrm{q} \leftarrow_{\leftarrow}^{\leftarrow} \mathrm{n}$-bit primes, $\quad \mathrm{N} \leftarrow \mathrm{pq}, \quad \mathrm{y} \stackrel{\mathrm{R}}{ } \mathrm{Z}_{\mathrm{N}}{ }^{*}$
But hardness of factoring Las not in ply hardness of RSA.
/Hardness of the RSA assumption relies on the hardness of
Consider the set of integers: (e.g. for $\mathrm{n}=1024$)

$$
\{N=p \cdot q \text { where }(p, q) \text { are } n \text {-bit primes }\}
$$

Problem: Factor a random element in the set (e.g. for $n=1024$) HARD!

Recall RSA assumpn: Given $\mathrm{pk}=(\mathrm{e}, \mathrm{N})$ and y , find y^{d} where $d=e^{-1}(\bmod \varphi(N))$
If you could factor $N \rightarrow$ find $(p, q) \rightarrow$ compute $\varphi(N)=(p-1)(q-1)=N-p-q+1$
\rightarrow compute $\mathrm{d}=\mathrm{e}^{-1}(\bmod \varphi(\mathrm{~N})) \rightarrow$ break RSA

Textbook RSA System
Gen(.): pk = (N, e), sk =(Nad) such that e•d=1(mod $\varphi(N))$
RSA-Enc (pk, x) $=x^{e} \quad\left(\right.$ in $\left.Z_{N}\right)$
RSA-Dec $(p k, y)=y^{d} \quad\left(\right.$ in $\left.Z_{N}\right)$
Is not semantically secure

How would you make it semantically secure?

$$
\begin{aligned}
& \operatorname{Enc}(p k, x) \text { pick } r \\
& (x \| r)^{e}
\end{aligned}
$$

Speeding up RSA

To speed up RSA use a small e: $c=m^{e}(\bmod N)$

- Minimum value: $\mathbf{e = 3} \quad(\operatorname{gcd}(\mathrm{e}, \varphi(\mathrm{N}))=1)$
- Recommended value: $\quad \mathbf{e}=\mathbf{6 5 5 3 7}=\mathbf{2}^{16}+\mathbf{1}$

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

- ElGamal (next module): approx. same time for both.

RSA in practice: PKCS1 v1.5 PKCS1 mode 2: (encryption)

- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS
- Suffered from a CCA attack

Chosen-ciphertext attack: to decrypt a given ciphertext C do:

- Choose $r \in Z_{N}$. Compute $c^{\prime} \leftarrow r^{e . c}=(r \cdot \operatorname{PKCS1}(m))^{e}$
- Send c^{\prime} to web server and use response $\xrightarrow{\text { choose } r \text { carefully. }}$

Baby Bleichenbacher

Suppose N is $\mathrm{N}=2^{\mathrm{n}} \quad$ (an invalid RSA modulus). Then:

- Sending c reveals $m s b(x)$

reveals $\operatorname{msb}(2 x \bmod N)=\operatorname{msb}_{2}(x)$
- Sending $4^{e} \cdot \mathbf{c}=(4 x)^{e}$ in Z_{N} reveals $\operatorname{msb}(4 x \bmod N)=\operatorname{msb}_{3}(x)$
- ... and so on to reveal all of x

The factoring problem

> Gauss (1805):
> "The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic."

Best known alg. (NFS): run time $\exp (\tilde{O}(\sqrt[3]{n}))$ for n -bit integer
Current world record: RSA-768 (232 digits)

- Work: two years on hundreds of machines
- Factoring a 1024-bit integer: about 1000 times harder
\Rightarrow likely possible this decade

Summary

- Key concepts in number theory
- Hardness of discrete logarithm, factoring
- Diffie-Hellman key exchange from hardness of DDH
- Public key encryption => shared key derivation (called key exchange)

