1) Consider a spherical electret of radius R with a polarization density of $\vec{P} = P_0 \hat{z}$.

a) Find
$$V(r < R)$$
 and $V(r > R)$.
$$V(r > R) = \frac{P_0 R^3 \cos \theta}{3\varepsilon_0 r^2}$$

- b) Find $\vec{E}(r < R)$ and $\vec{E}(r > R)$ in spherical coordinates.
- c) Find $\vec{D}(r < R)$ and $\vec{D}(r > R)$ in spherical coordinates.
- d) Which components of \vec{D} are continuous across r = R according to part c)? Which components of \vec{E} are continuous across r = R according to part b)? What should be the correct boundary conditions?
- 2) A perfect conductor filling the region z<0, carries a surface current of the form $\vec{K}=\beta y\,\hat{y}$ and $\vec{E}=\vec{B}=\vec{J}=0$ within the conductor. A vacuum with no currents or charge exist in the region z>0. Recall the surface boundary conditions $\vec{E}_>-\vec{E}_<=\frac{\sigma\hat{\eta}}{\varepsilon_0}$ and $\vec{B}_>-\vec{B}_<=\mu_0\vec{K}\times\hat{\eta}$ where in this problem $\hat{\eta}=\hat{z}$.
- a) Find \vec{B} just above the surface.
- b) Find the most general form of the surface charge σ using $\vec{\nabla} \Box \vec{K} + \partial \sigma / \partial t = 0$ $\sigma = -\beta t + \sigma_0$
- c) Find the most general form for \vec{E} just above the surface.
- d) Show that your \vec{B} expression of part a) and \vec{E} expression of part c) satisfy each of the four Maxwell's equations.
- 3) A long solenoid of radius R produces a time dependent magnetic field given by $\vec{B}(s < R) = \beta t \hat{z}$.
- a) Find $\vec{A}(s < R)$ and $\vec{A}(s > R)$ using $\iint \vec{A} \cdot d\ell = \int \vec{B} \cdot d\vec{a}$. $|\vec{A}(s > R)| = \frac{\beta t R^2}{2s} \hat{\phi}|$
- b) Verify $\left[\partial_s \vec{A}_{>} \partial_s \vec{A}_{<}\right]_{s=R} = -\mu_0 \vec{K}$
- c) Show that $\vec{E} = -\partial_t \vec{A}$ using Faraday's Law. This is easy since you just need to show that \vec{E} and $-\partial_t \vec{A}$ have the same curl.
- d) Find $\vec{E}(s < R)$ and $\vec{E}(s > R)$ using $\vec{E} = -\partial_t \vec{A}$
- e) Check that your part d) answers satisfy $\vec{\nabla} \times \vec{E} = -\partial_t \vec{B}$
- f) Verify that your $\vec{A}(s > R)$ gives $\vec{B}(s > R) = 0$

- 1) Consider a long, conducting inner cylinder of radius a and length L which carries a surface current of $\vec{K}_a = K \ \hat{z}$. A coaxial log cylinder of radius b and length L carries a surface current of \vec{K}_b with b > a. Answer all parts in terms of K, a, b, L, ω , cylindrical coordinates and physical constants as needed.
- (a) Find \vec{K}_b that insures that $\vec{B}(s>b)=0$. Assume this \vec{K}_b is present in all parts of this problem
- (b) Calculate $\vec{B}(a < s < b)$ using Ampere's Law.
- (c) Compute \vec{A} in all regions using $\int \vec{A} \Box d\vec{\ell} = \int_{S} \vec{B} \Box d\vec{a}$ $|\vec{A}(a < s < b)| = -\hat{z}\mu_{0}aK\ln\frac{s}{a}$
- (d) Check continuity of \vec{A} and discontinuity of $\frac{\partial \vec{A}}{\partial s}$ at s=a and s=b.

We now oscillate the inner conductor current according to $\vec{K} = K \sin \omega t \ \hat{z}$.

- (e) Compute \vec{E} to first order in ω using Faraday's Law. Hint- the electric field is along the z-direction and the loop integral was mostly done in part (c).
- (f) Check the \vec{E} expression you computed in part (e) using $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$.
- (g) Check that your \vec{E} expression satisfies $\vec{E} = -\frac{\partial \vec{A}}{\partial t}$ where \vec{A} is given by the "oscillating version" of the vector potential that you computed in part (c).
- (h) Calculate \vec{B} to second order in ω^2 by using the displacement current from the \vec{E} expression you computed in part (e). This integral may be helpful $\int v \ln v \ dv = \frac{v^2}{4} (2 \ln v 1).$
- 2) A perfect conductor filling the region z<0, carries a surface current of the form $\vec{K}=\beta y\,\hat{y}$ and $\vec{E}=\vec{B}=\vec{J}=0$ within the conductor. A vacuum with no currents or charge exist in the region z>0. Recall the surface boundary conditions $\vec{E}_>-\vec{E}_<=\frac{\sigma\hat{\eta}}{\varepsilon_0}$ and $\vec{B}_>-\vec{B}_<=\mu_0\vec{K}\times\hat{\eta}$ where in this problem $\hat{\eta}=\hat{z}$.
- a) Find \vec{B} just above the surface.
- b) Find the most general form of the surface charge σ using $\vec{\nabla} \Box \vec{K} + \partial \sigma / \partial t = 0$ $\sigma = -\beta t + \sigma_0$
- c) Find the most general form for \vec{E} just above the surface.
- d) Show that your \vec{B} expression of part a) and \vec{E} expression of part c) satisfy each of the four Maxwell's equations.
- 3) Consider an long solenoid with radius R and length L that holds a uniform B-field . You calculate the energy stored in the magnetic field using

$$U = \frac{1}{2\mu_0} \left[\int_V \vec{B} \cdot \vec{B} d\tau - \int_S (\vec{A} \times \vec{B}) \cdot d\vec{a} \right]$$
 but instead of computing this from the volume of

the solenoid, you decide to use a cylinder of length L and radius a coaxial with the solenoid for the volume term and the use surface of the cylinder for the surface. Do you get a reasonable answer? Specifically, I want you to compare the answer for the case where a < R to the case where a > R. Why the difference?