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Announcements

= | gst Lecturelll
= Final on Monday, 5/11/20

= Cumulative, weighted to solar questions
= 24 hours to take it, should take less that 3 hours to

complete
= |CES online for 333
= Today

= Where to go from here?
= Solar shading review

= PV emerging trends

= Storage



Where do we go from here?

" Intro to electric grid, electric machines, power
electronics

= ECE 330 (Schuh SMR 2020, Bose & Banerjee, FA 2020)

® Electric grid, power flow
» ECE 476 (Dominguez-Garcia, FA 2020)

= Flectric machines (lab course)
= ECE 431 (SP 2021)

= Power electronics
= ECE 464 (Stillwell, FA 2020)

= Power electronics laboratory
= ECE 469 (Stillwell, FA 2020)

= Solar Cells
= ECE 443 (SP 2021), ME 432 (FA 2020)



Solar Shading

Masters, Problem 5.10: Consider this very simple model for cells wired in series within a PV module.
Those cells that are exposed to full sun deliver 0.5 V; those that are completely shaded act like 5-€
resistors. For a module containing 40 such cells, an idealized I —V curve with all cells in full sun is
shown in Fig. 3.
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Figure 3: Figure P5.10 from Masters Text for Problem 1.

(a) Draw the PV I —V curves that will result when one cell is shaded and when two cells are shaded
(no battery load).

(b) If you are charging an idealized 12-V battery (vertical I —V" curve), compare the current delivered
under these three circumstances (full sun and both shaded circumstances).



Solar Shading
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More Shading

Masters, Problem 5.11: An idealized 1-sun I — V curve for a single 80-W module is shown below in
Fig. 4.

(a) For two such modules wired in series, draw the resulting I —V curve if the modules are exposed
to only 1/2 sun, and one cell, in one of the modules, is shaded. Assume the shaded cell has an
equivalent parallel resistance of 10 €.

(b) How much power would be generated at the maximum power point (MPP)?

%— 1-sun I-V curve
o 2 % sun
5
0 | shaded E ; “
0O 10 20 30 40 50 60 70 80 R,=100Q
Voltage (V) B
Figure P 5.11

Figure 4: Figure P5.11 from Masters Text for Problem 2.



More Shading I
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PV Trends I

= System: 1500 VDC
= Panel: Half Cells, Thin films
= System: Storage < —=




1500 V Solar Inverters

= 017 National Electric Code increase maximum
voltage to 1500 VDC

® 1500 VDC installations projected to reach 50% of new
installations by 2025 [*]

Photo Credit: Jinko Solar Photo Credit: CPS America

[*] 2017 International Technology Roadmap for Photovoltaic (ITRPV) 10



Commercial Solar PV Costs

= QOver 25% of system costs for 100 kW systems
attributed to installation costs [*]

= Size of the enclosure is a cost driver in inverter [**]
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[*] Fu, Ran, David Feldman, and Robert Margolis, “U.S. Solar Photovoltaic System Cost Benchmark: Q1

2018.” Golden, CO: National Renewable Energy Laboratory
[**] P. Parker et al. “Dominant Factors Affecting Reliability of Alternating Current Photovoltaic Modules”

IEEE PVSC 2015



1.5 kV Solar Inverters

[*]

L

= 1.5 kV solar requirements ]
= 50 kW - 2.5 MW ]
" |nput: 800V —-1500V DC S
= Qutput: 600 V,. (L-L) 3-phase

[1]

M

[*] http://www.gepowerconversion.com/product-solutions/low-voltage-drives/lv5-solar-ehouse-solution
[**] http://solar.huawei.com/na/products
[T] https://www.solectria.com/pv-inverters/utility-scale-inverters/xgi-1500/ 12



Solar Panels: Half Cells I

" Traditional 60 and 72 cell
panels =>120 and 144
cell panels

= \Why?
= Currentis cutin half
= \oltage is doubled Different coldimensions i i modules
= Smaller cell = less

mechanical stress
= Can treat each panel as
two separate panels

= hall cell ol

2028

Source: ”What is a half-ce” Solar panel?" Wﬂ:?redw’.'lfdmd'kets'ururw rmodules with full, half, and quarter celis.
https://www.solarpowerworldonline.com/2018/10/what-is-a-half-cell-solar-panel/
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https://www.solarpowerworldonline.com/2018/10/what-is-a-half-cell-solar-panel/

Panels: Thin Film Solar Panels

i

14



Panels: Thin Film Solar Panels

" Advantages
= Thinner —flexible and light weight
= Flexible voltage operation — o
= Possibly cheaper at scale
= Not targeted in 2018 tariffs

" Disadvantages
= Efficiency - ~17% - 18%
= |ack of investment
= |Less developed technology




Panels: Thin Film Solar Panels

96 Cell

V/s.

Th

N

F

Im

Electrical Data

SPR-E20-327 SPR-E19-320
Nominal Power (Pnom)!’ 327W 320 W
Power Tolerance +5/-0% +5/-0%
Avg. Panel Efficiency? 20.4% 19.9%
Rated Voltage (Vmpp) 547V 547V
Rated Current (Impp) 598 A 586 A
Open-Circuit Voltage (Voc) 649V 648V
Short-Circuit Current (Isc) 6.46 A 6.24 A
Max. System Voltage 600V UL & 1000V IEC
Maximum Series Fuse 15A
Power Temp Coef. -0.35%/°C
Voltage Temp Coef. ~176.6 mV /°C
Current Temp Coef. 26mA/°C

[} RATINGS AT STANDARD TEST
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The Need for Energy Storage Resources (ESR)

" The electricity business is the only industry sector that
sells a commodity without sizeable inventory

= The lack of utility—scale storage in today s power
system drives electricity to be a highly perishable
commodity

" The deepening renewable resource penetrations
exacerbate the challenges to maintain the demand—
supply equilibrium at all points in time

=  Storage provides considerable, added flexibility to
maintain demand—supply balance around the clock



Misalienment of Wind and Load
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Need for Larger and Faster Reserves

1.0

peak load fraction
=
N

large ramp up . :
required "



CAISO Daily Net Load Curve n

net load (Mm Source: CAISO
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Impacts of California Rooftop Solar I

Source: US EIA based on https://www.eia.gov/electricity/data/eia861m/index.html and http://www.caiso.co
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Net Load in California in Spring 2017

» CAISO recorded a 147 % increase in renewable
curtailment from the first quarter of 2016 to the first

quarter of 2017

" |n the first quarter of 2017, about 3 % of the total
potential wind and solar generation was curtailed,
and about 1 % of the total potential renewable
generation was curtailed

= On March 11, 2017, the solar curtailment exceeded
30 % of the solar production for an hour



Increased Flexibility Needs i

load (MW) net load = load — wind — solar output (MW)
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PRINCIPAL ROLES ESRs CAN PLAY

= Storage enables deferral of investments in:

= new conventional generation resources
= new transmission lines
= distribution circuit upgrades

= Storage is key to the development of microgrids —in
either grid—connected or autonomous systems



MORE ROLES ESRs CAN PLAY

In short—term operations, storage provides:

flexibility in time of energy consumption via demand shift
and peak—load shaving

ability to delay the start up of cycling units
levelization of substation load

reserves and frequency regulation services
demand response action

capability to provide voltage support

Storage can also provide virtual inertia service to
replace part of the missing inertia in grids with
integrated renewable resources —a major issue in
grids with deep renewable resource integration



LOAD AND LMP
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LOAD AND LMP
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LOAD AND LMP I
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LOAD AND LMP
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THE STORAGE RESOURCE PHASES

discharging phase



STORAGE UTILIZATION
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CYCLING UNITS WITHOUT ESRs I

; ; ; ; ; Source: ISO-NE
zo,oooI_ i-Lo

17,000 |

16,000 |
15,000 |} load

13,000 |

(MW)

UNILS

12,000 |

0 2 4 6 8 10 12 14 16 18 20 22 24
time of day




CYCLING UNITS WITH ESRs I
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Battery Storage and RER Symbiosis N

Source: The New York Times https://static01.nyt.com/images/2017/03/21/business/batteries-cover/batteries-cover-superJumbo.gif



INTEGRATION OF STORAGE WITH SOLAR n
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Demand Response Resources (DRRs) in Symbiosis

with ESRs

DRRs are demand—side entities which actively
participate in the markets as both buyers of
electricity and sellers of load curtailment services
DRRs reduce the load during peak hours and/or shift
the demand, in part or in whole, from peak hours to
low—load hours

The coordinated deployment of ESRs and DRRs can
be symbiotic to further reduce the operational costs
and emissions via reduced unit cycling and avoided
delays in the start—up of cycling units



Energy Storage Applications I

deferral of investments in generation,
transmission and distribution upgrades,

development of microgrids

energy utilization time—shifft,
provision of spinning reserves,
levelization of substation load

provision of voltage support, renewable energy
smoothing, peak—load shaving

provision of frequency regulation

provision of system

inertia time
¢ >
T T T T 1
10°10°710°10°°10 " 10

seconds minutes hours; days; months
| operations horizon —>eplanning horizon —»




Key Benefits of Grid-Integrated ESRs

" Deployment of ESRs:
= raises system reliability
= improves operational economics

= provides operators with additional flexibility to
optimize grid operations and manage grid congestion

" raises renewable output utilization

" Deployment of ESRs can reduce GHG emissions
because ESRs:
= facilitate renewable resource integration

" reduce the system reserves requirements on the
conventional fossil—fired resources

= displace the generation of inefficient and dirty units
used to meet peak loads



Energy Storage Technologies
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Storage Technology Advances
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Energy Storage Technology Characterization I

Source: Electricity Storage Association
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World Storage Status I

Source: DOE Global Energy Storage Database, http://www.energystorageexchange.org/projects/data_visualization

" There are currently 1,737 ESR global storage capacity

rojects implemented throughout
Pro) P 5 rest of the

the world with a total capacity ofworld: 32 %
196,301 MW

China: 26 %

= 288 out of these projects are in

California with a capacity of 7,512

" )
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Battery Energy Storage Systems (BESSs)

= Many practitioners consider the installation of BESSS
to most effectively address the challenges to integrate
deepening penetrations of renewable resources — a
game changer for RER integration

= BESSs can be highly efficient and discharge their
stored energy at high ramp rates

" The development of new, very large, highly efficient
batteries, appropriate for utility—scale storage, is
predicted to grow into a huge business



EIA: US BESS Capacity and Forecast I

Source: EIA, Annual Electric Generator Report and the Preliminary Monthly Electric
Generator, available at https://www.eia.gov/todayinenergy/detail. php?id=40072
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NOTREES PROJECT — GOLDSMITH, TX I
(36 MW /23.8 MWh)

Source: http://www.energystorageexchange.org/projects

The advanced lead—acid battery system project was

developed to reduce the output variability of the
153 MW wind power plant
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AES LAUREL MOUNTAIN — ELKINS, VA
(32 MW 8 MWh)

A s i st s
== — gy

The Li—ion batteries are installed in a 98—MW wind farm to
provide operating reserves and frequency regulation in the
PJM system




SCE PILOT PROJECT — ORANGE, CA
Q4 MW 39 MPh)

g .
|
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The set of Li—ion batteries relieves transformer overloads and

defers distribution network upgrades to ensure summer—time

demand peak loads are met



BUZEN SUBSTATION — BUZEN, FUKUOKA I

REFECTURE (50 MW /300 MWh)

,Soy‘ee: http://www.energystorageexchange.org/projects

“, -._-."“_ I. -...r_ :-_-,..
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The world’s largest BESS serves to provide

demand - supply balance



BATTERY VEHICLES (BV5)

= Reduction in CO, emissions and energy security are
the key drivers of initiatives aimed to promote the
electrification of the transportation sector

" Consequently, the past decade has seen growing sales
of BVs — electric vehicles (EVs), hybrid electric
vehicles (HEVs) and plug—in hybrid electric vehicles
(PHEVs) —fully/partially powered by batteries and
without internal combustion engines, in some cases




GLOBAL EVs SALES AND MARKET GROWTH [

Source: REN 21, Renewables 2019 Global Status Report p. 164; available online at
https.//www.ren21.net/wp-content/uploads/2019/05/gsr 2019 full report en.pdf
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EV LI-ION BATTERY PACKS: PRICES AND DEMAND
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BARRIERS TO LARGE-SCALE STORAGE n

DEPLOYMENT

" The pace of energy storage deployment has been very slow
in the past, mainly due to the extremely high costs of storage

" The reductions in storage costs over the past decade have
remained inadequate to stimulate the large—scale
deployment of ESRs

" The high costs of storage present a chicken and egg problem:
costs remain high due to low demand and the high costs

impede any growth in demand
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