Today

Monday, April 6, 2020 4:42 PM

Exam 2 - April 9th (Thursday)

- I will send out at midnight US Central Time
- Have 24 hours to complete
- It should take you less than 2
- Submit through Gradescope
- Don't panic

Today

- Basic semiconductor physics
- Band gap energy
- The PN Junction
- Exam 2 Topics

Basic Semiconductor Physics

- PV devices use semiconductor materials to convert sunlight into electricity
- Technology is similar to solid-state technologies used to make transistors, diodes, and all other devices that we use today.
- Most PV generation devices are made out of pure crystalline silicon.

13	14	15	16	17	18
		Pnicto-	Chalco-	Halogens	Noble
		gens	gens		gases
					Helium
					~
					He
					4.0026
Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
5	6	7	8	9	10
B	Ċ	N	0	F	Ne
10.81	12.011	14.007	15.999	18.998	20.180
Alumin-	Silicon	Phos-	Sulfur	Chlorine	Argon
ium 12	14	phorus	16	17	10
ΔΙ	Si		S	CI.	Δr
26.982	28.085	30.974	32.06	35.45	39.95
Gallium	Germa-	Arsenic	Selenium	Bromine	Krypton
04	nium	00		05	00
31 Ga	32	33	34 Se	30 Br	30
69.723	72.630	74.922	78.971	79.904	83.798
Indium	Tin	Antimony	Tellurium	lodine	Xenon
49	50	51	52	53	54
In	Sn	Sb	Te	Ĩ	Xe
		and the second se		100000000000000000000000000000000000000	

Fourth group of the periodic table

• Includes Germanium, which is also widely used in devices

Band Gap Energy

Monday, April 6, 2020 7:47 PM

Band Gap Energy

- At absolute zero temperature, silicon is a perfect electrical insulator. There are no electrons free to roam around as there are in metals
- As temperature rises, some electrons are given enough energy to free themselves from their nuclei, making them available to flow as current.
- The warmer they get, the more electrons are available to carry current, so conductivity increases.
- Silicon's conductivity at normal temperature is very low => it is referred to as a semiconductor.

We can use an energy band diagram (Fig 5.4).

- Electrons have energies that must fit within certain allowable energy bands
- At room temperature, only about 1 out of 10¹⁰ electrons in silicon exists in the conduction band
- The gaps between the allowable energy bands are called forbidden bands. The most important one is the band between the last filled band and the conduction band.
- The energy than an electron must acquire to jump across the forbidden band is called the **band-gap energy**.
- The units for band-gap energy are usually eV (electron-volts), where one eV is the energy that an electron acquires when its voltage is increased by 1 V (1 eV = 1.6 x 10⁻¹⁹ J).
- The band-gap energy for silicon is 1.12 eV
 - $\circ~$ The energy required to free an electron from its own nucleus.
 - In the case of a PV, this energy comes from the sun: photons of electromagnetic energy

Flectron Free Ò 0 · . .

N1 1

Negatively charged electron moves in conduction hand to holes can move too os volence electrons move to fill empty holes Photons with enough energy will create a hole-electron pain

thotons with enough energy will create a hole- Electrun pain Photons can be characterized by their wove length, trequency and energy: Example (5.1 in Dook) Photons to create Hole- Electron Pairs in Silicon · what maximum wave length can a photon have to create hole-electron pairs in silicon? what min frequency is that? 5: Dand gap = 1.12 eV, 1eV= 1.6×10-19) $\lambda \leq \underline{h.c.} = 1.11 \mu m$ $E = \underline{h.c.}$ E_g $\lambda \rightarrow any larger will result in lower E$ V7/ C = 2.7 × 1044 Hz For photons with 271.11pm, they cannot create electron-hole pairs =7 their energy is worked 05 heat in the cell photon (ev) hv7Eg photons with Eavigt Eg Wave length (pm) hV< Eg Useable Energy For photons with $\lambda < 1.11 \mu m$, the additional energy above Eq is also wasted

The P-N Junction 14 15 Monday, April 6, 2020 5:54 PM N-type material Helium · Dope silicon with a pentavalent material (e.g., phosphorus) He (:) • free electron • electron Carbon Nitrogen Oxygen Fluorine $\begin{array}{ccc} 14 & & & \\ \hline 14 & & & \\ \hline \end{array} \end{array} \xrightarrow{\uparrow 4} \end{array} \xrightarrow{\uparrow 4} = \begin{array}{c} \bullet & e e e e + v \circ n \\ \hline \bullet & & positive charge \\ \hline \hline \end{array}$ donor ion · Fixed immobile positive charge Se 78.971 As 74.922 · Freely rooming negative charge =7 n-1ype moterial Antimon 51 Sb 121.76 52 Te 127.60 53 | 126.90 P-type material · Dope silicon with a trivalent element (ez, poron) $(\cdot) (\cdot) (\cdot) = (\cdot) + 7 h_{o}le free to move$ $(\cdot) (\cdot) (\cdot) = (\cdot)$ Acceptor atom Fixed negative charge Mobile hole (positive charge) - P- + y pr P-N Junction $\mathcal{G}^{\dagger} \mathcal{O}^{\dagger} \mathcal{O}^{\dagger} \mathcal{O}^{\dagger} \mathcal{O}^{\dagger} \mathcal{O}^{-} \mathcal$ ot ot ot ot of of of P (Junction Electrons cross junction through diffusion, fill holes in P.t.ype material =7 after, there are not electrons O'O'O'O O'O'or holes free to move in the Vicinity at the junction PMN Pepletion Region Calatric D' 14 I have dive al 1

Ney' E electric field (positive charges move in direction of arrow) No bias => No current Reverse Bias = y strengthens E field, no current + + For ward Bias = 7 Weakens E field, allows electrons to Flow across depletion region This is a diode We need to provide a Voltage with this polarity for current to flow? $L V_{l}$ 19 Is this what we want? ... Nope P-N Junction Model J-J. (e 21/KT -1) Recull : Forward Bias: V70 equikt 771 Jdrift = Jn =7 I~ JGE EV /KT (distassion current) =7 sensitive to forward voltage Let's Look at this drift current: · coused by minority curriers (e on p. side) + +ypically small because there are few minurity carriers 4 However, optical excitation creates electron-hole pairs 4 drift current in creases ! Now, lets Flip this around in creosed illuminal GN Quadrant of interest Decause PV CEN delivery power

Useful ckt. model I deal single dicde PV cell Model Z V JUY 7 conventional P.N diode 5 diffusion I = Jph - Jole evikt-1) thermally created drift current Voltage Vios 7 Generation current } anount of sunlight (drift) temp, area ...

Exam 2 Review Monday, April 6, 2020 7:44 PM Types of WECS Bernoulli's Eqn Betz Efficiency Statistics (PDF, CDF) Rayleigh statistics Economics · Cosh Flows · IRR PVF, CRF
Life Cycle costs
Inflation TSR **Ideal Power Curve**