ECE 333
 Green Electric Energy

Lecture 16

Solar Position (4.4); Sun Path Diagrams and Shading
(4.5); Clear-Sky Direct-Beam Radiation (4.9)

Professor Andrew Stillwell

Department of Electrical and
Computer Engineering
Slides Courtesy of Prof. Tim O'Connell and George Gross

Announcements

- Announcements:
- Exam 2 Details
- Today
- 4.3: Review: Altitude Angle of the Sun at Solar Noon
- 4.4: Solar Position at Any Time of Day
- 4.5: Sun Path Diagrams for Shading Analysis
- 4.9: Clear-Sky Direct-Beam Radiation

Exam 2 Discussion

- Date: April 9 ${ }^{\text {th }}$
- Format: same as Exam 1
- Time: 24-hour window on April 9 ${ }^{\text {th }}$
- Length: same as Exam 1
- Resources: Open book, open notes, open computer You are welcome to use any resource except another person.
- Bonus points: 5 bonus points on Exam 2 for attaching your handwritten note sheets for Exam 1 and 2 (8.5" x 11", front and back)
- Attach to the end of the test
- Submission: through Gradescope

The Earth's Orbit

Equinox - equal day and night, on March 21 and September 21 Winter solstice - North Pole is tilted furthest from the sun
Summer solstice - North Pole is tilted closest to the sun

4.3: Altitude Angle of the Sun at Solar Noon

- Solar declination δ - the angle formed between the plane of the equator and the line from the center of the sun to the center of the earth
- δ varies between $+/-23.45^{\circ}$

The Sun's Position in the Sky

- Solar declination from an Earth-centric perspective
- Note: solar declination varies over the year, not during the day

Figure 4.5 An alternative view with a fixed earth and a sun that moves up and down. The angle between the sun and the equator is called the solar declination δ.

4.3: Altitude Angle of the Sun at Solar Noon

- Solar declination δ - the angle formed between the plane of the equator and the line from the center of the sun to the center of the earth
- δ varies between $+/-23.45^{\circ}$
- Assuming a sinusoidal relationship, a 365 dav year, and $n=81$ is the Spring equinox, the approximation of δ for any day n can be found from

Solar Noon and Collector Tilt

- Solar noon - sun is directly over the local line of longitude
- Rule of thumb for the Northern Hemisphere: a South-facing collector tilted at an angle equal to the local latitude

Figure 4.8 A south-facing collector tipped up to an angle equal to its latitude is perpendicular to the sun's rays at solar noon during the equinoxes.

- In this case, on an equinox, during solar noon, the sun's rays are perpendicular to the collector face

Altitude Angle $\boldsymbol{\beta}_{\mathbf{N}}$ at Solar Noon

- Altitude angle at solar noon β_{N} - angle between the Sun and the local horizon

$$
\begin{array}{|lr|}
\hline \beta_{N}=90^{\circ}-L+\delta \quad(4.7) & 0 \leq \beta_{N} \leq 90^{\circ} \\
\hline \hline 0 \leq L \leq 90^{\circ} \\
\hline \text { endicular axis at a site } & -23.45^{\circ} \leq \delta \leq 23.45^{\circ} \\
\hline
\end{array}
$$

- Zenith - perpendicular axis at a site

Figure 4.9 The altitude angle of the sun at solar noon.

Tilt Angle of a Photovoltaic (PV) Module

- Rule of thumb: Tilt angle $=90^{\circ}-\beta_{N}$

Example 4.2

- Example 4.2 Tilt Angle of a PV Module. Find the optimum tilt angle for a south-facing photovoltaic module in Tucson (latitude 32.1°) at solar noon on March 1.

$$
\begin{aligned}
& \text { March 1. } \\
& \text { Table } 4.1^{2} \rightarrow \text { March } 1=760^{1 n} \text { day }=n \\
& \delta=23.45 \cdot \sin \left(\frac{360}{365^{\circ}}\left(n^{\prime}-81\right)\right)=-8.3^{\circ} \\
& B_{N}=90^{\circ}-L+\delta=90-32.1^{\circ}+\left(.8 .3^{\circ}\right)=49.6^{\circ} \\
& T_{i} 1+=90^{\circ}-B_{N}=90^{\circ}-49.6=40.4^{\circ}
\end{aligned}
$$

- Described in terms of altitude angle, β, and azimuth angle, ϕ_{S}, of the sun
- β and ϕ_{S} depend on latitude, day number, and time of day
- Azimuth angle $\left(\phi_{S}\right)$ convention
- Positive in the morning when Sun is in the East
- Negative in the evening when Sun is in the West
- Reference in the Northern Hemisphere (for us) is true South
- Hours are referenced to solar noon

Altitude Angle and Azimuth Angle

- Solar time - Noon occurs when the sun is over the local meridian (due South for us in the Northern Hemisphere above the tropics)

Sun Path

Hour Angle

- Hour angle H - the number of degrees the earth must rotate before sun will be over the local line of longitude
- If we consider the earth to rotate at $15^{\circ} / \mathrm{hr}$, then

Hour angle $H=\left(\frac{15^{\circ}}{\text { hour }}\right) \cdot($ hours before solar noon)

- Examples:
(4.10)
- At 11 AM solar time, $H=+15^{\circ}$ (the earth needs to rotate 1 more hour to reach solar noon)
- At 2 PM solar time, $H=-30^{\circ}$

Solar Coordinates

- Calculate the position of the Sun at any time of day on any day of the year:

$$
\begin{align*}
& \sin \beta=\cos L \cos \delta \cos H+\sin L \sin \delta \tag{4.8}\\
& \sin \phi_{S}=\frac{\cos \delta \sin H}{\cos \beta} \tag{4.9}
\end{align*}
$$

- Be careful! In Spring and Summer, the Sun can be more than 90° from due South at sunset/sunrise:

Sun Path

Solar Coordinates

- Calculate the position of the Sun at any time of day on any day of the year:

$$
\begin{align*}
& \sin \beta=\cos L \cos \delta \cos H+\sin L \sin \delta) \tag{4.8}\\
& \left.\sin \phi_{S}=\frac{\cos \delta \sin H}{\cos \beta}\right) \tag{4.9}
\end{align*}
$$

- Be careful! In Spring and Summer, the Sun can be more than 90° from due South at sunset/sunrise:

$$
\begin{equation*}
\text { if } \quad \cos H \geq \frac{\tan \delta}{\tan L}, \quad \text { then }\left|\phi_{S}\right| \leq 90^{\circ} ; \quad \text { otherwise }\left|\phi_{S}\right|>90^{\circ} \tag{4.11}
\end{equation*}
$$

Example: Where is the Sun?

- Do Example 4.3, p. 198 in text
- Find altitude and azimuth of the sun at 3:00 pm solar time in Boulder, CO ($L=40$ degrees) on the Summer Solstice

$$
\begin{aligned}
& \text { (SSS, } \frac{\delta=23.45^{\circ}}{15^{\circ} \cdot(-3 h)}=-45^{\circ}=H \\
& H= \\
& \sin B=\cos l \cdot \cos \delta \cdot \cos H \\
& \quad+\sin L \cdot \sin \delta \\
& \sin B=0.7527 \\
& B=\sin ^{-1}(0.7527)=48.8^{\circ}
\end{aligned}
$$

Extra room for problem
azimuth an ale - eq 4.4

$$
\begin{aligned}
& \sin d_{s}=\frac{\cos \delta \cdot \sin t}{\cos \beta_{\theta}}=-0.9848 \\
& \phi s=\sin ^{-}(-0.9848)=-80^{\circ} \text { or } 180^{\circ}-(.801)=260^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { To find correct } 894.11
\end{aligned}
$$

$$
\begin{gathered}
\cos H=\cos \left(-45^{\circ}\right)=0.707 \frac{\tan r}{\tan C}=0.917 \\
\cos H \geqslant \frac{\tan \delta}{\tan L} \Rightarrow \begin{array}{c}
6 \\
\\
\mid \phi_{s} 1 \leqslant 90^{\circ}
\end{array}
\end{gathered}
$$

Sun Path

Sun Path Diagram for Shading Analysis: $40^{\circ} \mathrm{N}$

 Latitude

Figure 4.12 A sun path diagram showing solar altitude and azimuth angles for 40° latitude. Diagrams for other latitudes are in Appendix B.

Sun Path Diagram: $28^{\circ} \mathrm{N}$ Latitude

Sun Path Diagram: $36^{\circ} \mathrm{N}$ Latitude

Sun Path Diagram: $48^{\circ} \mathrm{N}$ Latitude

4.5: Sun Path Diagrams for Shading Analysis

- Now we know how to locate the sun in the sky at any time
- This can also help determine what sites will be in the shade at any time
- Sketch the azimuth and altitude angles of trees, buildings, and other obstructions
- Sections of the sun path diagram that are covered indicate times when the site will be in the shade
- Shading of a portion of a solar panel could greatly reduce the output for the full panel (depending upon design)

Sun Path Diagram for Shading Analysis

- Use a simple plumb-bob, protractor and compass to put obstructions on the diagram

Sun Path Diagram for Shading Analysis

- Trees to the southeast, small building to the southwest
- Can estimate the amount of energy lost to shading

Sun Path Diagram for Shading Analysis

TABLE 4.2: Hour-by-Hour ($\mathrm{W} / \mathrm{m}^{2}$) and Daylong $\left(\mathrm{kWh} / \mathrm{m}^{2}\right)$ Clear Sky Insolation at 40° Latitude in January for Tracking and Fixed, South-Facing Collectors

Solar Time	Tracking		Fixed, South-Facing Tilt Angles					60	90
	One-axis	Two-axis	0	20	30	40	50		
7.5	0	0	0	0	0	0	0	0	0
8,4	439	462	87	169	(204)	232	254	269	266
(9) 3	744	784	260	424	4893	540	575	593	544
10,2	857	903	397	609	689	749	788	803	708
11,1	905	954	485	722	811	876	915	927	801
12	919	968	515	761	852	919	958	968	832
$\mathrm{kWh} / \mathrm{m}^{2} / \mathrm{d}$	6.81	7.17	2.97	4.61	5.24	5.71	6.02	6.15	5.47

Ex. 4.4: January day; south-facing collector; at $40^{\circ} \mathrm{N}$ latitude with a fixed, 30° tilt angle.

How much sunlight reaches us?

- We now know where the Sun is at any given time at any location on Earth
- Based on this, how much solar insolation can we expect at a given site?
- This will help us determine how much energy can be expected from a solar panel installation

Clear Sky Direct-Beam Radiation

- Direct beam radiation $I_{B C}$ - passes in a straight line through the atmosphere to the receiver
- Diffuse radiation $I_{D C}$ - scattered by molecules in thof
atmosphere
- Reflected radiation $I_{R C}$
- bounced off a surface near the reflector

We'll only focus on direct beam radiation in this class.

Extraterrestrial Solar Insolation I_{0}

- I_{0} is the starting point for clear sky radiation calculations
- I_{0} passes perpendicularly through an imaginary surface outside of the earth's atmosphere

Extraterrestrial Solar Insolation I_{0}

- I 0 varies with the Earth's distance from the sun as well as sunspots and other solar activity
- We will ignore sunspot effects
- We can approximate I_{0} as:

$$
I_{0}=\mathrm{SC} \cdot\left[1+0.034 \cos \left(\frac{360 n}{365}\right)\right] \quad\left(\mathrm{W} / \mathrm{m}^{2}\right)
$$

$$
\mathrm{SC}=\text { solar constant }=1.377 \mathrm{~kW} / \mathrm{m}^{2}
$$

$$
n=\text { day number }
$$

Extraterrestrial Solar Insolation I_{0}

- Much of I_{0} is absorbed by various gases, scattered by dust, air molecules, water vapor, etc.
- In one year, less than half of I_{0} reaches earth's surface as a direct beam
- On a sunny, clear day, beam radiation may exceed 70\% of $I 0$

Attenuation of Incoming Radiation

$$
I_{B}=A e^{-k m} \quad \text { (4.20) }
$$

- $I_{B}=$ beam portion of the radiation that reaches the earth's surface
- A = apparent extraterrestrial flux
- $k=$ optical depth
- $m=$ air mass ratio

The A and k values are location dependent, varying with values such as dust and water vapor content

Air mass ratio $m=\sqrt{(708 \sin \beta)^{2}+1417}-708 \sin \beta$

Attenuation of Incoming Radiation

- A and k values can be found from empirical data:

TABLE 4.5 Optical Depth k, Apparent Extraterrestrial Flux A for the $\mathbf{2 1}^{\text {st }}$ Day of Each Month

Month:	Jan Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
$A\left(\mathrm{~W} / \mathrm{m}^{2}\right)$:	12301215	1186	1136	1104	1088	1085	1107	1151	1192	1221	1233
k:	0.1420 .144	0.156	0.180	0.196	0.205	0.207	0.201	0.177	0.160	0.149	0.142

Source: ASHRAE (1993).
*This table is based on empirical data for a moderately dusty atmosphere with atmospheric water vapor content equal to the average monthly values in the US.

Attenuation of Incoming Radiation

- A and k values can also be found from a best fit equation based on measured data:

$$
\begin{align*}
& A=1160+75 \sin \left[\frac{360}{365}(n-275)\right] \quad\left(\mathrm{W} / \mathrm{m}^{2}\right) \tag{4.22}\\
& k=0.174+0.035 \sin \left[\frac{360}{365}(n-100)\right]
\end{align*}
$$

*Best fit equations based on Table 4.5 data

Example 4.8: Direct Beam Radiation at Earth's
Surface

- Find I_{B} (the direct beam solar radiation) at solar noon an a clear day in Atlanta ($L=33.7^{\circ}$) on May $21^{\text {st }}$. Compare empirical calculation (Table 4.5) to the best-fit equations (4.21) through (4.23)

$$
\begin{aligned}
& L=33.7, \text { may } 21=7=141\left(f^{\prime 4 \prime}\right. \\
& E 4.22, A=1160+75 \sin \left(\frac{366}{365}(n-275)=1104 \mathrm{~m} / \mathrm{m}^{2}=A\right. \\
& K=0.174+0.035 \sin \left[\frac{360}{365}(n-100)\right]=0.197=K \\
& \delta=23.45 \sin \left(\frac{360}{365}(141-81)=20.140\right. \\
& B_{n}=90^{\circ} \cdot L+\delta=90-33.7+20.1=76.4^{\circ}
\end{aligned}
$$

Room for problem

$$
\begin{aligned}
& m=\sqrt{(708 \sin \beta)^{2}+1417}-708 \sin \beta=1.024=m \\
& E_{q} 4.20 \\
& I_{B}=A \rho^{-k m}=11046^{-0.197 \times 1.029}=902 \mathrm{k} / \mathrm{m}^{2}
\end{aligned}
$$

Wrap-up

- That's it for Chapter 4
- No HW this week - start studying for Exam 2
- I'm now a barber and part time shop teacher

