

ECE 333 Green Electric Energy

Lecture 16

Solar Position (4.4); Sun Path Diagrams and Shading (4.5); Clear-Sky Direct-Beam Radiation (4.9)

Professor Andrew Stillwell

Department of Electrical and Computer Engineering

Slides Courtesy of Prof. Tim O'Connell and George Gross

- Announcements:
 - Exam 2 Details
- Today
 - 4.3: Review: Altitude Angle of the Sun at Solar Noon
 - 4.4: Solar Position at Any Time of Day
 - 4.5: Sun Path Diagrams for Shading Analysis
 - 4.9: Clear-Sky Direct-Beam Radiation

- Date: April 9th
- Format: same as Exam 1
- Time: 24-hour window on April 9th
- Length: same as Exam 1
- Resources: Open book, open notes, open computer -You are welcome to use any resource *except another person*.
- Bonus points: 5 bonus points on Exam 2 for attaching your <u>handwritten</u> note sheets for Exam 1 and 2 (8.5" x 11", front and back)
 - Attach to the end of the test
- Submission: through Gradescope

The Earth's Orbit

Equinox – equal day and night, on March 21 and September 21 Winter solstice – North Pole is tilted furthest from the sun Summer solstice – North Pole is tilted closest to the sun 4.3: Altitude Angle of the Sun at Solar Noon

- Solar declination δ the angle formed between the plane of the equator and the line from the center of the sun to the center of the earth
- δ varies between +/- 23.45°

The Sun's Position in the Sky

- Solar declination from an Earth-centric perspective
 - Note: solar declination varies over the year, not during the day

4.3: Altitude Angle of the Sun at Solar Noon

- Solar declination δ the angle formed between the plane of the equator and the line from the center of the sun to the center of the earth
- δ varies between +/- 23.45°
- Assuming a sinusoidal relationship, a 365 day year, and n=81 is the Spring equinox, the approximation of δ for any day n can be found from

Solar Noon and Collector Tilt

- Solar noon sun is directly over the local line of longitude
- Rule of thumb for the Northern Hemisphere: a South-facing collector tilted at an angle equal to the local latitude

Figure 4.8 A south-facing collector tipped up to an angle equal to its latitude is perpendicular to the sun's rays at solar noon during the equinoxes.

• In this case, on an <u>equinox</u>, during solar noon, the sun's rays are perpendicular to the collector face

Altitude Angle β_N at Solar Noon

Altitude angle at solar noon β_N – angle between the Sun and the local horizon

Figure 4.9 The altitude angle of the sun at solar noon.

Tilt Angle of a Photovoltaic (PV) Module

• Rule of thumb: Tilt angle = $90^{\circ} - \beta_N$

Example 4.2

Example 4.2 Tilt Angle of a PV Module. Find the optimum tilt angle for a south-facing photovoltaic module in Tucson (latitude 32.1°) at solar noon on March 1. Table 4.1 - March 1 = 7 60th day = n $\int = 23.45 \cdot \sin\left(\frac{360}{365}\left(\frac{\pi}{8}-81\right)\right) = -8.30$ BN = 90'- L+J = 90-32.1'+(-8.3')= 49.1" Tilt = 90' - BN = 90: 49,6 = 40.40 1

- Described in terms of altitude angle, β , and azimuth angle, ϕ_S , of the sun
- β and ϕ_S depend on latitude, day number, and time of day
- Azimuth angle (ϕ_S) convention
 - Positive in the morning when Sun is in the East
 - Negative in the evening when Sun is in the West
 - Reference in the Northern Hemisphere (for us) is true South
- Hours are referenced to solar noon

Altitude Angle and Azimuth Angle

 Solar time – Noon occurs when the sun is over the local meridian (due South for us in the Northern Hømisphere above the tropics)

Hour Angle

- Hour angle H- the number of degrees the earth must rotate before sun will be over the local line of longitude
- If we consider the earth to rotate at 15°/hr, then

Hour angle
$$H = \left(\frac{15^{\circ}}{\text{hour}}\right) \cdot \text{(hours before solar noon)}$$
 (7.10)

- Examples: (4.10)
 - At 11 AM solar time, H = +15° (the earth needs to rotate 1 more hour to reach solar noon)
 - At 2 PM solar time, H = -30°

 Calculate the position of the Sun at any time of day on any day of the year:

$$\sin \beta = \cos L \cos \delta \cos H + \sin L \sin \delta$$
(4.8)
$$\sin \phi_S = \frac{\cos \delta \sin H}{\cos \beta}$$
(4.9)

• **Be careful!** In Spring and Summer, the Sun can be more than 90° from due South at sunset/sunrise:

(4.11)

 Calculate the position of the Sun at any time of day on any day of the year:

$$\sin \beta = \cos L \cos \delta \cos H + \sin L \sin \delta$$
 (4.8)
$$\sin \phi_S = \frac{\cos \delta \sin H}{\cos \beta}$$
 (4.9)

• **Be careful!** In Spring and Summer, the Sun can be more than 90° from due South at sunset/sunrise:

if
$$\cos H \ge \frac{\tan \delta}{\tan L}$$
, then $|\phi_S| \le 90^\circ$; otherwise $|\phi_S| > 90^\circ$ (4.11)

Example: Where is the Sun?

noon

Do Example 4.3, p.198 in text

 Find altitude and azimuth of the sun at 3:00 pm solar time in Boulder, CO (L=40 degrees) on the Summer Solstice

Extra room for problem

azimnth angle - Eq 4.4 Sin 4s = coso sin H = - 0.98 48 $d_{5} = sin^{-}(-0.9846) = -80^{\circ} \text{ or } 180^{\circ} - (80^{\circ}) = 260^{\circ}$ W100 WTo find correct eq 4.11 $(05 \text{ H} = (05(-45) = 0.707 \frac{100}{100} = 0.917$ Coy H 7 Jand => &= -80° V ton L => \$\$ 451 < 90'

1

Sun Path Diagram for Shading Analysis: 40°N Latitude

Figure 4.12 A sun path diagram showing solar altitude and azimuth angles for 40° latitude. Diagrams for other latitudes are in Appendix B.

4.5: Sun Path Diagrams for Shading Analysis

- Now we know how to locate the sun in the sky at any time
- This can also help determine what sites will be in the shade at any time
 - Sketch the azimuth and altitude angles of trees, buildings, and other obstructions
 - Sections of the sun path diagram that are covered indicate times when the site will be in the shade
- Shading of a portion of a solar panel could greatly reduce the output for the full panel (depending upon design)

Sun Path Diagram for Shading Analysis

 Use a simple plumb-bob, protractor and compass to put obstructions on the diagram

Sun Path Diagram for Shading Analysis

- Trees to the southeast, small building to the southwest
- Can estimate the amount of energy lost to shading

Sun Path Diagram for Shading Analysis

Solar Time	Tracking		Fixed, South-Facing Tilt Angles						
	One-axis	Two-axis	0	20	30	40	50	60	90
7.5	0	0	0	0	0	0	0	0	0
8.4	439	462	87	169	204	232	254	269	266
9.3	744	784	260	424	489	540	575	593	544
10, 2	857	903	397	609	689	749	788	803	708
11, 1	905	954	485	722	811	876	915	927	801
12	919	968	515	761	852	919	958	968	832
kWh/m²/d	6.81	7.17	2.97	4.61	5.24	5.71	6.02	6.15	5.4

TABLE 4.2: Hour-by-Hour (W/m²) and Daylong (kWh/m²) Clear Sky Insolation at 40° Latitude in January for Tracking and Fixed, South-Facing Collectors

Ex. 4.4: January day; south-facing collector; at 40° N latitude with a fixed, 30° tilt angle.

How much sunlight reaches us?

- We now know where the Sun is at any given time at any location on Earth
- Based on this, how much solar insolation can we expect at a given site?
 - This will help us determine how much energy can be expected from a solar panel installation

Clear Sky Direct-Beam Radiation

- Direct beam radiation I_{BC} passes in a straight line through the atmosphere to the receiver
- Diffuse radiation I_{DC} scattered by molecules in the atmosphere
- Reflected radiation I_{RC} bounced off a surface near the Diffuse Beam I_{DC} reflector IBC Collector IRC Reflected We'll only focus on **direct beam radiation** in this class.

Ι

- *I*₀ is the starting point for clear sky radiation calculations
- *I*₀ passes perpendicularly through an imaginary surface outside of the earth's atmosphere

- *I*₀ varies with the Earth's distance from the sun as well as sunspots and other solar activity
- We will ignore sunspot effects

SC = solar constant = 1.377 kW/m²

n = day number

Extraterrestrial Solar Insolation I₀

- Much of I₀ is absorbed by various gases, scattered by dust, air molecules, water vapor, etc.
- In one year, less than half of I₀ reaches earth's surface as a direct beam
- On a sunny, clear day, beam radiation may exceed 70% of I₀

$$I_B = Ae^{-km}$$
 (4.20)

- *I_B* = beam portion of the radiation that reaches the earth's surface
- A = apparent extraterrestrial flux
- *k* = optical depth
- *m* = air mass ratio

The *A* and *k* values are location dependent, varying with values such as **dust** and **water vapor** content

Air mass ratio
$$m = \sqrt{(708 \sin \beta)^2 + 1417 - 708 \sin \beta}$$
 (4.21)

• A and k values can be found from **empirical** data:

*This table is based on empirical data for a moderately dusty atmosphere with atmospheric water vapor content equal to the average monthly values in the US. A and k values can also be found from a best fit equation based on measured data:

$$A = 1160 + 75 \sin \left[\frac{360}{365} (n - 275) \right] \quad (W/m^2) \tag{4.22}$$
$$k = 0.174 + 0.035 \sin \left[\frac{360}{365} (n - 100) \right] \qquad (4.23)$$

*Best fit equations based on Table 4.5 data

Example 4.8: Direct Beam Radiation at Earth's Surface

• Find I_B (the direct beam solar radiation) at solar noon on a clear day in Atlanta ($L = 33.7^{\circ}$) on May 21^{st} . Compare empirical calculation (Table 4.5) to the best-fit equations (4.21) through (4.23)

 $L = 33.7, \quad May 2 1 = 7 \quad n = 141 \quad (14)$ $E = 4.22 \quad A = 1140 + 75 \quad \sin\left(\frac{360}{365} \left(n - 275\right) = 1104 \ m / m^2 = A$ $K = 0.174 + 0.035 \quad \sin\left[\frac{360}{365} \left(n - 100\right)\right] = 0.197 = K$ $\int = 23.45 \quad \sin\left(\frac{360}{365} \left(141 - 81\right) = 20.140$ $B_{n} = 90^{\circ} - L + \delta = 90 - 33.7 + 20.1 = 76.4^{\circ}$

Room for problem

$m = \overline{(708 \sin \beta)^2 + 1417} - 708 \sin \beta = 1.029 = m$ Eq 4.20 $J_{\beta} = A e^{-Km} = 1104e^{-0.197 \times 1.029} = 902 w/m^2$

- That's it for Chapter 4
- No HW this week start studying for Exam 2
- I'm now a barber and part time shop teacher

